Search for blocks/addresses/...

Proofgold Asset

asset id
28a6d5bbf1639250ef2a6b4020f753c3410a831c54faf992ca7e4e060d87c721
asset hash
e837976d8a13494095375899bb59f44f450ee22088ba6d4a7c012985a7d1cf96
bday / block
11196
tx
b7bb4..
preasset
doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param andand : οοο
Param PreContinuousHomHom_struct_c : ιιιο
Param BinRelnHomHom_struct_r : ιιιο
Param UnaryPredHomHom_struct_p : ιιιο
Definition 8fd9f.. := λ x0 x1 x2 . and (and (PreContinuousHom x0 x1 x2) (BinRelnHom x0 x1 x2)) (UnaryPredHom x0 x1 x2)
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Param struct_c_r_p : ιο
Conjecture a1248.. : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture fe7b7.. : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 02233.. : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 8430a.. : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture fc06e.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 0b716.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 0a9cf.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture af1d5.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 00869.. : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 4328d.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 5bd1b.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Conjecture 65dd3.. : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) struct_c_r_p 8fd9f.. struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6