Search for blocks/addresses/...

Proofgold Asset

asset id
5b232afc6dce6949483e5691cf4572d83f91d277ccb230a962678143e97fbe9c
asset hash
09a2062b7a3d635e6c021ece3dfb89bc30f15d37c614ac7d226e5b344c0ab786
bday / block
34293
tx
d81e1..
preasset
doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition 2b028.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5x0 x3 x5x0 x4 x5x6)x6
Definition 9ab39.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition 2319a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (9ab39.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition dbaa8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (2319a.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)x0 x3 x8x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 8a4fe.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0dbaa8.. x2 x4 x5 x6 x7 x8 x9 x10 x11∀ x12 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)not (x2 x11 x3)x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3x2 x9 x3not (x2 x10 x3)not (x2 x11 x3)x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)x2 x11 x3x12)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3x2 x9 x3not (x2 x10 x3)x2 x11 x3x12)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x2 x10 x3x2 x11 x3x12)x12
...