Search for blocks/addresses/...

Proofgold Asset

asset id
6254594baebb35e93a178815d1c1427769354f39c59a9fdfefa94bd41eccf718
asset hash
2f61a1e030ed7e6baa6d81892108694a1ba04472033460dec6708cf317933f0c
bday / block
28248
tx
a97e6..
preasset
doc published by PrQUS..
Param f4b0e.. : ιιιιι
Param ordsuccordsucc : ιι
Definition 84b4d.. := f4b0e.. 0 1 0 0
Definition 439cb.. := f4b0e.. 0 0 1 0
Definition 11c0b.. := f4b0e.. 0 0 0 1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param SNoSNo : ιο
Definition 6b27d.. := λ x0 . prim0 (λ x1 . and (SNo x1) (∃ x2 . and (SNo x2) (∃ x4 . and (SNo x4) (∃ x6 . and (SNo x6) (x0 = f4b0e.. x1 x2 x4 x6)))))
Definition e5fe3.. := λ x0 . prim0 (λ x1 . and (SNo x1) (∃ x2 . and (SNo x2) (∃ x4 . and (SNo x4) (x0 = f4b0e.. (6b27d.. x0) x1 x2 x4))))
Definition e47cc.. := λ x0 . prim0 (λ x1 . and (SNo x1) (∃ x2 . and (SNo x2) (x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) x1 x2)))
Definition 7cd66.. := λ x0 . prim0 (λ x1 . and (SNo x1) (x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) (e47cc.. x0) x1))
Definition 8c189.. := λ x0 . ∃ x1 . and (SNo x1) (∃ x3 . and (SNo x3) (∃ x5 . and (SNo x5) (∃ x7 . and (SNo x7) (x0 = f4b0e.. x1 x3 x5 x7))))
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∃ x1 . x0 x1)x0 (prim0 x0)
Theorem 3f1df.. : ∀ x0 . 8c189.. x0and (SNo (6b27d.. x0)) (∃ x1 . and (SNo x1) (∃ x3 . and (SNo x3) (∃ x5 . and (SNo x5) (x0 = f4b0e.. (6b27d.. x0) x1 x3 x5))))
...

Theorem 0dacf.. : ∀ x0 . 8c189.. x0and (SNo (e5fe3.. x0)) (∃ x1 . and (SNo x1) (∃ x3 . and (SNo x3) (x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) x1 x3)))
...

Theorem 9c07c.. : ∀ x0 . 8c189.. x0and (SNo (e47cc.. x0)) (∃ x1 . and (SNo x1) (x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) (e47cc.. x0) x1))
...

Theorem ef681.. : ∀ x0 . 8c189.. x0and (SNo (7cd66.. x0)) (x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) (e47cc.. x0) (7cd66.. x0))
...

Theorem 7f221.. : ∀ x0 . 8c189.. x0SNo (6b27d.. x0)
...

Theorem 7b3f7.. : ∀ x0 . 8c189.. x0SNo (e5fe3.. x0)
...

Theorem 523de.. : ∀ x0 . 8c189.. x0SNo (e47cc.. x0)
...

Theorem 07fd4.. : ∀ x0 . 8c189.. x0SNo (7cd66.. x0)
...

Theorem f9f9c.. : ∀ x0 . 8c189.. x0x0 = f4b0e.. (6b27d.. x0) (e5fe3.. x0) (e47cc.. x0) (7cd66.. x0)
...

Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 440f9.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x38c189.. (f4b0e.. x0 x1 x2 x3)
...

Theorem 0869d.. : ∀ x0 . 8c189.. x0∀ x1 : ι → ο . (∀ x2 x3 x4 x5 . SNo x2SNo x3SNo x4SNo x5x0 = f4b0e.. x2 x3 x4 x5x1 (f4b0e.. x2 x3 x4 x5))x1 x0
...

Known SNo_0SNo_0 : SNo 0
Known SNo_1SNo_1 : SNo 1
Theorem a616f.. : 8c189.. 84b4d..
...

Theorem c38f0.. : 8c189.. 439cb..
...

Theorem 84934.. : 8c189.. 11c0b..
...

Known 84fad.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x4SNo x5SNo x6f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x0 = x4
Theorem 7484f.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x36b27d.. (f4b0e.. x0 x1 x2 x3) = x0
...

Known aa1e8.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x1 = x5
Theorem d5450.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3e5fe3.. (f4b0e.. x0 x1 x2 x3) = x1
...

Known 04ead.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x2 = x6
Theorem 097ec.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3e47cc.. (f4b0e.. x0 x1 x2 x3) = x2
...

Known 57cf4.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7f4b0e.. x0 x1 x2 x3 = f4b0e.. x4 x5 x6 x7x3 = x7
Theorem 40e63.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x37cd66.. (f4b0e.. x0 x1 x2 x3) = x3
...

Param minus_SNominus_SNo : ιι
Definition 2b257.. := λ x0 . f4b0e.. (minus_SNo (6b27d.. x0)) (minus_SNo (e5fe3.. x0)) (minus_SNo (e47cc.. x0)) (minus_SNo (7cd66.. x0))
Param add_SNoadd_SNo : ιιι
Definition 989da.. := λ x0 x1 . f4b0e.. (add_SNo (6b27d.. x0) (6b27d.. x1)) (add_SNo (e5fe3.. x0) (e5fe3.. x1)) (add_SNo (e47cc.. x0) (e47cc.. x1)) (add_SNo (7cd66.. x0) (7cd66.. x1))
Param mul_SNomul_SNo : ιιι
Definition 1d79d.. := λ x0 x1 . f4b0e.. (add_SNo (mul_SNo (6b27d.. x0) (6b27d.. x1)) (add_SNo (minus_SNo (mul_SNo (e5fe3.. x0) (e5fe3.. x1))) (add_SNo (minus_SNo (mul_SNo (e47cc.. x0) (e47cc.. x1))) (minus_SNo (mul_SNo (7cd66.. x0) (7cd66.. x1)))))) (add_SNo (mul_SNo (6b27d.. x0) (e5fe3.. x1)) (add_SNo (mul_SNo (e5fe3.. x0) (6b27d.. x1)) (add_SNo (mul_SNo (e47cc.. x0) (7cd66.. x1)) (minus_SNo (mul_SNo (7cd66.. x0) (e47cc.. x1)))))) (add_SNo (mul_SNo (6b27d.. x0) (e47cc.. x1)) (add_SNo (minus_SNo (mul_SNo (e5fe3.. x0) (7cd66.. x1))) (add_SNo (mul_SNo (e47cc.. x0) (6b27d.. x1)) (mul_SNo (7cd66.. x0) (e5fe3.. x1))))) (add_SNo (mul_SNo (6b27d.. x0) (7cd66.. x1)) (add_SNo (mul_SNo (e5fe3.. x0) (e47cc.. x1)) (add_SNo (minus_SNo (mul_SNo (e47cc.. x0) (e5fe3.. x1))) (mul_SNo (7cd66.. x0) (6b27d.. x1)))))