Search for blocks/addresses/...

Proofgold Asset

asset id
7bc05fb6557406f79dcea1a6ecaefb7e5aff9e9b6f24e10f102ef1eac4321222
asset hash
da90b0a0cdb1f0ccbb77492f676a32e0c8a7fa8ff3b05317b06cf9e7cdf28528
bday / block
2190
tx
c37db..
preasset
doc published by PrGxv..
Definition False := ∀ x0 : ο . x0
Definition not := λ x0 : ο . x0False
Definition nIn := λ x0 x1 . not (prim1 x0 x1)
Definition empty_p := λ x0 . ∀ x1 . nIn x1 x0
Known 0117f.. : ∃ x0 . ∀ x2 . nIn x2 x0
Theorem 438d4.. : ∃ x0 . empty_p x0
...

Param 4a7ef.. : ι
Known dcd83.. : ∀ x0 . nIn x0 4a7ef..
Theorem 9a431.. : empty_p 4a7ef..
...

Param iff : οοο
Known 0ddd1.. : ∀ x0 x1 . (∀ x2 . iff (prim1 x2 x0) (prim1 x2 x1))x0 = x1
Known iffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known FalseE : False∀ x0 : ο . x0
Theorem d10d0.. : ∀ x0 . empty_p x0x0 = 4a7ef..
...

Definition or := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition 4326e.. := λ x0 x1 . or (prim1 x1 x0) (and (empty_p x0) (empty_p x1))
Known xm : ∀ x0 : ο . or x0 (not x0)
Known orIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIR : ∀ x0 x1 : ο . x1or x0 x1
Known andI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem f6630.. : ∀ x0 . ∃ x1 . 4326e.. x0 x1
...

Theorem 25303.. : ∀ x0 x1 . prim1 x1 x04326e.. x0 x1
...

Theorem 9bba6.. : ∀ x0 . empty_p x04326e.. x0 4a7ef..
...

Theorem 7e37c.. : ∀ x0 . not (empty_p x0)∀ x1 . 4326e.. x0 x1prim1 x1 x0
...

Theorem 6231b.. : ∀ x0 . empty_p x0∀ x1 . 4326e.. x0 x1x1 = 4a7ef..
...

Definition c2f57.. := λ x0 : ι → ο . ∃ x1 . ∀ x3 . iff (prim1 x3 x1) (x0 x3)
Param 91630.. : ιι
Known fead7.. : ∀ x0 x1 . prim1 x1 (91630.. x0)x1 = x0
Known e7a4c.. : ∀ x0 . prim1 x0 (91630.. x0)
Theorem c3a5b.. : ∀ x0 . c2f57.. (4326e.. x0)
...

Param 707e2.. : (ιο) → ι
Known 477e8.. : ∀ x0 : ι → ο . c2f57.. x0∀ x1 . prim1 x1 (707e2.. x0)x0 x1
Known bbc77.. : ∀ x0 : ι → ο . c2f57.. x0∀ x1 . x0 x1prim1 x1 (707e2.. x0)
Theorem 6c266.. : ∀ x0 . not (empty_p x0)707e2.. (4326e.. x0) = x0
...