Search for blocks/addresses/...
Proofgold Asset
asset id
7bc05fb6557406f79dcea1a6ecaefb7e5aff9e9b6f24e10f102ef1eac4321222
asset hash
da90b0a0cdb1f0ccbb77492f676a32e0c8a7fa8ff3b05317b06cf9e7cdf28528
bday / block
2190
tx
c37db..
preasset
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Definition
empty_p
:=
λ x0 .
∀ x1 .
nIn
x1
x0
Known
0117f..
:
∃ x0 .
∀ x2 .
nIn
x2
x0
Theorem
438d4..
:
∃ x0 .
empty_p
x0
...
Param
4a7ef..
:
ι
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
9a431..
:
empty_p
4a7ef..
...
Param
iff
:
ο
→
ο
→
ο
Known
0ddd1..
:
∀ x0 x1 .
(
∀ x2 .
iff
(
prim1
x2
x0
)
(
prim1
x2
x1
)
)
⟶
x0
=
x1
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
d10d0..
:
∀ x0 .
empty_p
x0
⟶
x0
=
4a7ef..
...
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
4326e..
:=
λ x0 x1 .
or
(
prim1
x1
x0
)
(
and
(
empty_p
x0
)
(
empty_p
x1
)
)
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
f6630..
:
∀ x0 .
∃ x1 .
4326e..
x0
x1
...
Theorem
25303..
:
∀ x0 x1 .
prim1
x1
x0
⟶
4326e..
x0
x1
...
Theorem
9bba6..
:
∀ x0 .
empty_p
x0
⟶
4326e..
x0
4a7ef..
...
Theorem
7e37c..
:
∀ x0 .
not
(
empty_p
x0
)
⟶
∀ x1 .
4326e..
x0
x1
⟶
prim1
x1
x0
...
Theorem
6231b..
:
∀ x0 .
empty_p
x0
⟶
∀ x1 .
4326e..
x0
x1
⟶
x1
=
4a7ef..
...
Definition
c2f57..
:=
λ x0 :
ι → ο
.
∃ x1 .
∀ x3 .
iff
(
prim1
x3
x1
)
(
x0
x3
)
Param
91630..
:
ι
→
ι
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Theorem
c3a5b..
:
∀ x0 .
c2f57..
(
4326e..
x0
)
...
Param
707e2..
:
(
ι
→
ο
) →
ι
Known
477e8..
:
∀ x0 :
ι → ο
.
c2f57..
x0
⟶
∀ x1 .
prim1
x1
(
707e2..
x0
)
⟶
x0
x1
Known
bbc77..
:
∀ x0 :
ι → ο
.
c2f57..
x0
⟶
∀ x1 .
x0
x1
⟶
prim1
x1
(
707e2..
x0
)
Theorem
6c266..
:
∀ x0 .
not
(
empty_p
x0
)
⟶
707e2..
(
4326e..
x0
)
=
x0
...