Search for blocks/addresses/...
Proofgold Asset
asset id
99d235ba04fa69cd78b5b364226143da565ebc6de40a02b2ce02c80a07a9d7c4
asset hash
91bb75b8bc8dd3db29a40d039720290bdc46391746a641bce4e4dbcbe883c2f9
bday / block
4950
tx
5ac18..
preasset
doc published by
Pr6Pc..
Param
and
and
:
ο
→
ο
→
ο
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
ReplSep2
ReplSep2
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
True
:
ο
Theorem
08340..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
∈
x0
)
⟶
x1
∈
x0
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
∈
x0
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x7
(
x4
x8
x9
)
=
x4
(
x4
x7
x8
)
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
=
x4
x8
x7
)
⟶
x2
∈
x0
⟶
(
∀ x7 .
x7
∈
x0
⟶
(
x7
=
x1
⟶
∀ x8 : ο .
x8
)
⟶
∃ x8 .
and
(
x8
∈
x0
)
(
x4
x7
x8
=
x2
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x7
(
x3
x8
x9
)
=
x3
(
x4
x7
x8
)
(
x4
x7
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
x0
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
(
x3
x7
x8
)
x9
=
x3
(
x4
x7
x9
)
(
x4
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x7
x8
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x8
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
∃ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
x8
x9
)
)
)
∈
x0
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
x8
)
)
∈
x0
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x10
x11
)
)
)
=
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x10
x11
)
)
)
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
=
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
⟶
x7
=
x8
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∃ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∃ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∃ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
x9
x10
)
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x11
x12
)
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∃ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
)
)
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x14
x15
)
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x14
x15
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
x16
x17
)
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x16
x17
)
)
)
)
x14
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x14
x15
)
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x16
x17
)
)
)
)
x14
)
)
)
)
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
x16
x17
)
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x14
x15
)
)
)
)
)
)
=
x6
x10
x11
)
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x14
x15
)
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x14
x15
)
)
)
)
x12
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x14
x15
)
)
)
)
x12
)
)
)
)
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∃ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x14
x15
)
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
)
)
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
x16
x17
)
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x16
x17
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∃ x19 .
and
(
x19
∈
x0
)
(
x7
=
x6
x18
x19
)
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∃ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x18
x19
)
)
)
)
x16
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
x16
x17
)
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∃ x19 .
and
(
x19
∈
x0
)
(
x8
=
x6
x18
x19
)
)
)
)
x16
)
)
)
)
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∃ x19 .
and
(
x19
∈
x0
)
(
x7
=
x6
x18
x19
)
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∃ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
x16
x17
)
)
)
)
)
)
=
x6
x12
x13
)
)
)
)
x10
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∃ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∃ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x7
(
x4
x8
x9
)
∈
x0
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
x3
(
x3
x7
x8
)
(
x3
x9
x10
)
=
x3
(
x3
x7
x10
)
(
x3
x8
x9
)
)
⟶
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
∀ x9 .
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x9
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x9
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x9
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
)
)
)
=
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
x15
)
)
)
)
(
x4
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
x15
)
)
)
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
)
)
=
x6
x11
x12
)
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x13
x14
)
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∃ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∃ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x17
x18
)
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x19
x20
)
)
)
)
x17
)
)
)
)
(
x4
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x19 .
and
(
x19
∈
x0
)
(
∃ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x19
x20
)
)
)
)
x17
)
)
)
(
prim0
(
λ x17 .
and
(
x17
∈
x0
)
(
∃ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x17
x18
)
)
)
)
)
)
=
x6
x13
x14
)
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∃ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
)
)
...