Search for blocks/addresses/...

Proofgold Asset

asset id
a179b81ce500833fc634d3b7c0e0755567420310dad1cb0a290ea826ff3530d9
asset hash
5a1f94fb20ffce03da7612be3c8fb18939caa38a2030e9ae152008497798f36a
bday / block
2840
tx
75294..
preasset
doc published by PrGxv..
Param 0fc90.. : ι(ιι) → ι
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param If_i : οιιι
Param e0e40.. : ι((ιο) → ο) → ι
Param eb53d.. : ιCT2 ι
Definition 79551.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 x4 : ι → ι . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (0fc90.. x0 x3) (0fc90.. x0 x4)))))
Param f482f.. : ιιι
Known 7d2e2.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) 4a7ef.. = x0
Theorem 749af.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = 79551.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef..
...

Theorem 304d6.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . x0 = f482f.. (79551.. x0 x1 x2 x3 x4) 4a7ef..
...

Param decode_c : ι(ιο) → ο
Known 504a8.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. 4a7ef..) = x1
Known 81500.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3prim1 x3 x0)decode_c (e0e40.. x0 x1) x2 = x1 x2
Theorem 4d424.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = 79551.. x1 x2 x3 x4 x5∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)x2 x6 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x6
...

Theorem 0d0bd.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x0)x1 x5 = decode_c (f482f.. (79551.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5
...

Param e3162.. : ιιιι
Known fb20c.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. 4a7ef..)) = x2
Known 35054.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0e3162.. (eb53d.. x0 x1) x2 x3 = x1 x2 x3
Theorem 32458.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = 79551.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7
...

Theorem 578ea.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (79551.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6
...

Known 431f3.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x3
Known f22ec.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0f482f.. (0fc90.. x0 x1) x2 = x1 x2
Theorem 57777.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = 79551.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6
...

Theorem a28b4.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . prim1 x5 x0x3 x5 = f482f.. (f482f.. (79551.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5
...

Known ffdcd.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x4
Theorem 2eefa.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = 79551.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6
...

Theorem 4a764.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . prim1 x5 x0x4 x5 = f482f.. (f482f.. (79551.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5
...

Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem 84faa.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 x8 x9 : ι → ι . 79551.. x0 x2 x4 x6 x8 = 79551.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10)
...

Param iff : οοο
Known 4402a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . prim1 x3 x0x1 x3 = x2 x3)0fc90.. x0 x1 = 0fc90.. x0 x2
Known 8fdaf.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0x1 x3 x4 = x2 x3 x4)eb53d.. x0 x1 = eb53d.. x0 x2
Known fe043.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4prim1 x4 x0)iff (x1 x3) (x2 x3))e0e40.. x0 x1 = e0e40.. x0 x2
Theorem 5f45e.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 x7 x8 : ι → ι . (∀ x9 : ι → ο . (∀ x10 . x9 x10prim1 x10 x0)iff (x1 x9) (x2 x9))(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 x9 x10 = x4 x9 x10)(∀ x9 . prim1 x9 x0x5 x9 = x6 x9)(∀ x9 . prim1 x9 x0x7 x9 = x8 x9)79551.. x0 x1 x3 x5 x7 = 79551.. x0 x2 x4 x6 x8
...

Definition a34bf.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι . (∀ x6 . prim1 x6 x2prim1 (x5 x6) x2)∀ x6 : ι → ι . (∀ x7 . prim1 x7 x2prim1 (x6 x7) x2)x1 (79551.. x2 x3 x4 x5 x6))x1 x0
Theorem fcbe6.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι . (∀ x4 . prim1 x4 x0prim1 (x3 x4) x0)∀ x4 : ι → ι . (∀ x5 . prim1 x5 x0prim1 (x4 x5) x0)a34bf.. (79551.. x0 x1 x2 x3 x4)
...

Theorem 29d2f.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . a34bf.. (79551.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0
...

Theorem fbf9e.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . a34bf.. (79551.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x3 x5) x0
...

Theorem fa785.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . a34bf.. (79551.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x4 x5) x0
...

Known iff_refl : ∀ x0 : ο . iff x0 x0
Theorem b8a67.. : ∀ x0 . a34bf.. x0x0 = 79551.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
...

Definition 0fe5a.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem df733.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ι . (∀ x10 . prim1 x10 x1x5 x10 = x9 x10)x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)0fe5a.. (79551.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...

Definition 66c72.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem b86d4.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ι . (∀ x10 . prim1 x10 x1x5 x10 = x9 x10)x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)66c72.. (79551.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...

Param d2155.. : ι(ιιο) → ι
Definition e0851.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 : ι → ι . λ x4 : ι → ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (0fc90.. x0 x3) (d2155.. x0 x4)))))
Theorem 4ebad.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = e0851.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef..
...

Theorem 460aa.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ι → ο . x5 x0 (f482f.. (e0851.. x0 x1 x2 x3 x4) 4a7ef..)x5 (f482f.. (e0851.. x0 x1 x2 x3 x4) 4a7ef..) x0
...

Theorem 073a0.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = e0851.. x1 x2 x3 x4 x5∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)x2 x6 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x6
...

Theorem 5c288.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x0)x1 x5 = decode_c (f482f.. (e0851.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5
...

Theorem efbef.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = e0851.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7
...

Theorem bdf8d.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (e0851.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6
...

Theorem b959d.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = e0851.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6
...

Theorem ce3f7.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0x3 x5 = f482f.. (f482f.. (e0851.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5
...

Param 2b2e3.. : ιιιο
Known 67416.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x02b2e3.. (d2155.. x0 x1) x2 x3 = x1 x2 x3
Theorem c4cce.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = e0851.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x5 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 x7
...

Theorem 92724.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x4 x5 x6 = 2b2e3.. (f482f.. (e0851.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6
...

Theorem df5e5.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . ∀ x8 x9 : ι → ι → ο . e0851.. x0 x2 x4 x6 x8 = e0851.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x8 x10 x11 = x9 x10 x11)
...

Known 62ef7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0iff (x1 x3 x4) (x2 x3 x4))d2155.. x0 x1 = d2155.. x0 x2
Theorem a6655.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . ∀ x7 x8 : ι → ι → ο . (∀ x9 : ι → ο . (∀ x10 . x9 x10prim1 x10 x0)iff (x1 x9) (x2 x9))(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 x9 x10 = x4 x9 x10)(∀ x9 . prim1 x9 x0x5 x9 = x6 x9)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x7 x9 x10) (x8 x9 x10))e0851.. x0 x1 x3 x5 x7 = e0851.. x0 x2 x4 x6 x8
...

Definition aeb79.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι . (∀ x6 . prim1 x6 x2prim1 (x5 x6) x2)∀ x6 : ι → ι → ο . x1 (e0851.. x2 x3 x4 x5 x6))x1 x0
Theorem ec219.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι . (∀ x4 . prim1 x4 x0prim1 (x3 x4) x0)∀ x4 : ι → ι → ο . aeb79.. (e0851.. x0 x1 x2 x3 x4)
...

Theorem a6520.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . aeb79.. (e0851.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0
...

Theorem c0731.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . aeb79.. (e0851.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x3 x5) x0
...

Theorem 94800.. : ∀ x0 . aeb79.. x0x0 = e0851.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
...

Definition b2a3b.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 89be7.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ι → ο . (∀ x10 . prim1 x10 x1∀ x11 . prim1 x11 x1iff (x5 x10 x11) (x9 x10 x11))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)b2a3b.. (e0851.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...

Definition 984ea.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem b3cc9.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ι → ο . (∀ x10 . prim1 x10 x1∀ x11 . prim1 x11 x1iff (x5 x10 x11) (x9 x10 x11))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)984ea.. (e0851.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...

Param 1216a.. : ι(ιο) → ι
Definition b042b.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 : ι → ι . λ x4 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (0fc90.. x0 x3) (1216a.. x0 x4)))))
Theorem 49b7a.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = b042b.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef..
...

Theorem 72488.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . x0 = f482f.. (b042b.. x0 x1 x2 x3 x4) 4a7ef..
...

Theorem 4f786.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = b042b.. x1 x2 x3 x4 x5∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)x2 x6 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x6
...

Theorem baca8.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x0)x1 x5 = decode_c (f482f.. (b042b.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5
...

Theorem 84ac3.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = b042b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7
...

Theorem 99c8d.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = e3162.. (f482f.. (b042b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6
...

Theorem 7c85f.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = b042b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6
...

Theorem f01cb.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0x3 x5 = f482f.. (f482f.. (b042b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5
...

Param decode_p : ιιο
Known 931fe.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0decode_p (1216a.. x0 x1) x2 = x1 x2
Theorem 731eb.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = b042b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6
...

Theorem d0dab.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0x4 x5 = decode_p (f482f.. (b042b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5
...

Theorem 602b2.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . ∀ x8 x9 : ι → ο . b042b.. x0 x2 x4 x6 x8 = b042b.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10)
...

Known ee7ef.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . prim1 x3 x0iff (x1 x3) (x2 x3))1216a.. x0 x1 = 1216a.. x0 x2
Theorem d0866.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . ∀ x7 x8 : ι → ο . (∀ x9 : ι → ο . (∀ x10 . x9 x10prim1 x10 x0)iff (x1 x9) (x2 x9))(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 x9 x10 = x4 x9 x10)(∀ x9 . prim1 x9 x0x5 x9 = x6 x9)(∀ x9 . prim1 x9 x0iff (x7 x9) (x8 x9))b042b.. x0 x1 x3 x5 x7 = b042b.. x0 x2 x4 x6 x8
...

Definition 11625.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι . (∀ x6 . prim1 x6 x2prim1 (x5 x6) x2)∀ x6 : ι → ο . x1 (b042b.. x2 x3 x4 x5 x6))x1 x0
Theorem fa143.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι . (∀ x4 . prim1 x4 x0prim1 (x3 x4) x0)∀ x4 : ι → ο . 11625.. (b042b.. x0 x1 x2 x3 x4)
...

Theorem 47b65.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . 11625.. (b042b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x2 x5 x6) x0
...

Theorem 4b3b3.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . 11625.. (b042b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x3 x5) x0
...

Theorem 58996.. : ∀ x0 . 11625.. x0x0 = b042b.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
...

Definition 83200.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 80c9a.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)83200.. (b042b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...

Definition 0f03b.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 412a4.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι)(ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . (∀ x6 : (ι → ο) → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x1)iff (x2 x7) (x6 x7))∀ x7 : ι → ι → ι . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1x3 x8 x9 = x7 x8 x9)∀ x8 : ι → ι . (∀ x9 . prim1 x9 x1x4 x9 = x8 x9)∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)0f03b.. (b042b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
...