Search for blocks/addresses/...

Proofgold Asset

asset id
a8091dd608868e39da605da1989334b39f4a32cc7ac23d82bfc537154e60fcdd
asset hash
20f94187321f577942bdba41d01137cfc3cf688d1dbca4668c7d5d9728e450ec
bday / block
41042
tx
1521e..
preasset
signature published by PrCmT..
Import Signature 6aee2..
Param 3b93e..decode_b : ιιιι
Param 28572..encode_b : ιCT2 ι
Known 8d10c..decode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3
Known d0102..encode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)encode_b x0 x1 = encode_b x0 x2
Param e9507..decode_p : ιιο
Known d5832..decode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0decode_p (Sep x0 x1) x2 = x1 x2
Known c1030..encode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))Sep x0 x1 = Sep x0 x2
Param e6e31..encode_r : ι(ιιο) → ι
Param b93a6..decode_r : ιιιο
Known 08a8a..decode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2x0∀ x3 . x3x0decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3
Known fa3b1..encode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))encode_r x0 x1 = encode_r x0 x2
Param abcb4..encode_c : ι((ιο) → ο) → ι
Param 3edd4..decode_c : ι(ιο) → ο
Known 880bf..decode_encode_c : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3x3x0)decode_c (encode_c x0 x1) x2 = x1 x2
Known 0c548..encode_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3))encode_c x0 x1 = encode_c x0 x2
Known 8ab1d..ordinal_ordsucc_In : ∀ x0 . ordinal x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known b3f1e..ordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Known b2498..ordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Param 327f9..pack_p : ι(ιο) → ι
Known fac8f..pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Param 65334..pack_r : ι(ιιο) → ι
Known 09249..pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Param 33166..int : ι
Known be344..nat_p_int : ∀ x0 . nat_p x0x0int
Known b5182..beta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known 1affc..ap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known 520af..ap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known 3733f..lam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known cb962..ap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Param c16a7..SNo_ : ιιο
Param 12b5f..SNoEq_ : ιιιο
Param 116b7..SNo : ιο
Param 83dce..SNoLev : ιι
Param 8c8aa..SNoLt : ιιο
Param 54f40..SNoLe : ιιο
Known f0e9f..SNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known 49cd5..SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known bf4ac..SNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1
Known f0983..SNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known 23cc4..SNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known f756d..SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1
Known d12fc..SNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known 06fac..SNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known 7588e..SNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known ccfdf..SNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known 83bd2..SNoLe_ref : ∀ x0 . SNoLe x0 x0
Known 3abee..SNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Known ba854..SNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known 4a77a..SNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known 03198..SNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known 8965d..SNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Param 77512..SNoCutP : ιιο
Param 295bc..SNoCut : ιιι
Known 5bcc8..SNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Param 4680c..SNoS_ : ιι
Known 04f24..SNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known b4042..SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Known 62b49..SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Param 48bcf..SNoL : ιι
Param 0cfe8..SNoR : ιι
Known 7aba5..SNoCutP_SNoL_SNoR : ∀ x0 . SNo x0SNoCutP (SNoL x0) (SNoR x0)
Known 7ccd8..SNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known 7dca0..SNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known 4f3d0..SNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known 383e8..SNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0
Known dc927..SNo_eta : ∀ x0 . SNo x0x0 = SNoCut (SNoL x0) (SNoR x0)
Known f6661..SNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known 1eea3..ordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known fea5f..ordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known 5fd93..nat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known d0f9c..omega_SNo : ∀ x0 . x0omegaSNo x0
Known 2ccf7..omega_SNoS_omega : omegaSNoS_ omega
Known ced78..ordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known c9a73..ordinal_SNoLev_max_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe x1 x0
Known 15c58..ordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known de775..ordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known 94a31..SNo_0 : SNo 0
Known 9a733..SNo_1 : SNo 1
Known c524a..SNo_2 : SNo 2
Known 3527a..SNoLev_0 : SNoLev 0 = 0
Param ffee2..eps_ : ιι
Known d073f..eps_0_1 : eps_ 0 = 1
Known 006b0..SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known 760b4..SNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known 851a8..SNoLev_ind : ∀ x0 : ι → ο . (∀ x1 . SNo x1(∀ x2 . x2SNoS_ (SNoLev x1)x0 x2)x0 x1)∀ x1 . SNo x1x0 x1
Known db7b5..SNo_omega : SNo omega
Known cb639..SNoLt_0_1 : SNoLt 0 1
Known f4693..SNoLt_0_2 : SNoLt 0 2
Known 19d5e..SNoLt_1_2 : SNoLt 1 2
Param 8a6d8..minus_SNo : ιι
Known 744cc..SNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known 3ebf6..minus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known f8c89..minus_SNo_Le_contra : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe (minus_SNo x1) (minus_SNo x0)
Known cc64e..minus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known 476ae..minus_SNo_Lev : ∀ x0 . SNo x0SNoLev (minus_SNo x0) = SNoLev x0
Known 29872..minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known f4196..minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Known 0c19f..minus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Param f62f9..add_SNo : ιιι
Known a5709..SNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known f2d78..SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known 42037..SNo_add_SNo_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (add_SNo x0 (add_SNo x1 (add_SNo x2 x3)))
Known cb073..add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known abcf7..add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known 6f094..add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known 3f52b..add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known 55bda..add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Known be66c..add_SNo_Le3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x0 x2SNoLe x1 x3SNoLe (add_SNo x0 x1) (add_SNo x2 x3)
Known f017e..add_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known 446ba..add_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known 1a7fa..add_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known 44e25..add_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known b2f9c..add_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known 9df65..add_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known eb637..add_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known 2b829..add_SNo_1_1_2 : add_SNo 1 1 = 2
Known bc15a..add_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known 91f4e..add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known 43b4d..add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known 598ee..add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known 78125..add_SNo_cancel_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x0 x2x1 = x2
Known e6280..add_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2
Known 3fcc5..minus_SNo_0 : minus_SNo 0 = 0
Known da8d5..minus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known 6d16a..add_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known 2ec8a..add_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Known f2ec8..add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3
Known 3c9cc..add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known e25ee..add_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known 34064..add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known a8450..add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known 4033d..add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Known 36214..add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0
Known 0b5cc..add_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Known 68419..add_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Known d815d..add_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Known 36bf6..ordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known 2c799..SNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Param 2990e..abs_SNo : ιι
Known 88568..pos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known fd708..abs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Param b1473..mul_SNo : ιιι
Known 9fd08..SNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known c2320..mul_SNo_Lt : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x2 x0SNoLt x3 x1SNoLt (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known a4f4a..mul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known 5477a..mul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known 83d5f..mul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known 3d0cd..mul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known 2e747..mul_SNo_minus_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known 5f038..mul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known 2a483..mul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known d322c..mul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known eb633..mul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known 8435a..mul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known aaf0d..mul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known 1b25c..mul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known 0e949..pos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Known ae94b..nonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Known d984d..mul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known fc765..mul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1)
Known cda6e..mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known e23f1..mul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Known 035c5..mul_SNo_nonzero_cancel : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known 14278..int_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1intx0 x1
Known 6089e..int_SNo : ∀ x0 . x0intSNo x0
Known b1bb2..Subq_omega_int : omegaint
Known 1036d..int_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Known b2c59..int_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Known f4056..int_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int
Param ea810..exp_SNo_nat : ιιι
Known f317b..SNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known 39327..nat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1)
Known 1a029..eps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known e69e4..mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1
Param 8b12f..div_SNo : ιιι
Known c761b..SNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1)
Param 5277e..real : ι
Known 9f45f..real_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Known 447bb..real_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∃ x3 . and (x3SNoS_ omega) (and (SNoLt x3 x0) (SNoLt x0 (add_SNo x3 (eps_ x2)))))x1)x1
Known d4cbb..real_SNo : ∀ x0 . x0realSNo x0
Known d9411..SNoS_omega_real : SNoS_ omegareal
Known 49313..real_0 : 0real
Known 790b4..real_1 : 1real
Known 4b837..real_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known 3c841..real_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known 51dc4..real_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real