Search for blocks/addresses/...
Proofgold Asset
asset id
c374b47c3d6cff0c0cf4b70fcfde96769cf61d956a92937a96453fcfff578e04
asset hash
5263a4b405bb1587b2021b3d4f646766fd383a5021bbd3d9ce97e02c2723c6e8
bday / block
35124
tx
651a6..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
dc232..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 :
ι → ι
.
∀ x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι → ο
.
∀ x8 :
ι →
ι →
ι → ι
.
∀ x9 x10 :
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
∀ x13 .
∀ x14 :
ι → ι
.
∀ x15 :
ι → ο
.
∀ x16 x17 x18 .
∀ x19 :
ι →
ι → ι
.
∀ x20 .
∀ x21 :
ι → ι
.
∀ x22 .
∀ x23 x24 :
ι → ι
.
∀ x25 x26 x27 :
ι →
ι → ι
.
∀ x28 :
ι → ο
.
∀ x29 .
∀ x30 :
ι → ο
.
(
∀ x31 x32 .
x30
x32
⟶
(
x32
=
x31
⟶
False
)
⟶
x30
x31
⟶
False
)
⟶
(
∀ x31 x32 .
x0
x31
x32
⟶
x30
x32
⟶
False
)
⟶
(
∀ x31 .
x30
x31
⟶
(
x31
=
x29
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x0
x31
x32
⟶
x2
x32
(
x1
x33
)
⟶
x30
x33
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x0
x32
x33
⟶
x2
x33
(
x1
x31
)
⟶
(
x2
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x3
x32
x31
⟶
(
x2
x32
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x2
x32
(
x1
x31
)
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x2
x31
x32
⟶
(
x30
x32
⟶
False
)
⟶
(
x0
x31
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x0
x32
x31
⟶
(
x2
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x4
x32
⟶
x2
x31
(
x1
(
x5
x32
)
)
⟶
(
x3
x31
(
x6
x32
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x28
x32
⟶
x4
x32
⟶
x2
x31
(
x1
(
x5
x32
)
)
⟶
(
x6
x32
x31
=
x27
(
x5
x32
)
(
x26
x31
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x28
x33
⟶
x4
x33
⟶
x2
x32
(
x1
(
x5
x33
)
)
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x7
x31
x33
⟶
x3
x32
x31
⟶
(
x0
x31
(
x26
x32
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x28
x33
⟶
x4
x33
⟶
x2
x32
(
x1
(
x5
x33
)
)
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x31
(
x26
x32
x33
)
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x28
x33
⟶
x4
x33
⟶
x2
x32
(
x1
(
x5
x33
)
)
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x31
(
x26
x32
x33
)
⟶
(
x7
x31
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x28
x32
⟶
x4
x32
⟶
x2
x31
(
x1
(
x5
x32
)
)
⟶
(
x2
(
x26
x31
x32
)
(
x1
(
x1
(
x5
x32
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x4
x33
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x32
(
x5
x33
)
⟶
x0
x32
(
x8
x32
x31
x33
)
⟶
(
x0
x32
(
x6
x33
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x4
x33
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x32
(
x5
x33
)
⟶
(
x3
x31
(
x8
x32
x31
x33
)
⟶
False
)
⟶
(
x0
x32
(
x6
x33
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x4
x33
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x32
(
x5
x33
)
⟶
(
x7
(
x8
x32
x31
x33
)
x33
⟶
False
)
⟶
(
x0
x32
(
x6
x33
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x4
x33
⟶
x2
x31
(
x1
(
x5
x33
)
)
⟶
x0
x32
(
x5
x33
)
⟶
(
x2
(
x8
x32
x31
x33
)
(
x1
(
x5
x33
)
)
⟶
False
)
⟶
(
x0
x32
(
x6
x33
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 x34 .
x4
x34
⟶
x2
x31
(
x1
(
x5
x34
)
)
⟶
x0
x33
(
x5
x34
)
⟶
x0
x33
(
x6
x34
x31
)
⟶
x2
x32
(
x1
(
x5
x34
)
)
⟶
x7
x32
x34
⟶
x3
x31
x32
⟶
(
x0
x33
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x28
x32
⟶
x4
x32
⟶
x2
x31
(
x1
(
x1
(
x5
x32
)
)
)
⟶
x7
(
x25
x31
x32
)
x32
⟶
(
x7
(
x27
(
x5
x32
)
x31
)
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x28
x32
⟶
x4
x32
⟶
x2
x31
(
x1
(
x1
(
x5
x32
)
)
)
⟶
(
x0
(
x25
x31
x32
)
x31
⟶
False
)
⟶
(
x7
(
x27
(
x5
x32
)
x31
)
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x28
x32
⟶
x4
x32
⟶
x2
x31
(
x1
(
x1
(
x5
x32
)
)
)
⟶
(
x2
(
x25
x31
x32
)
(
x1
(
x5
x32
)
)
⟶
False
)
⟶
(
x7
(
x27
(
x5
x32
)
x31
)
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
(
x3
x31
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x2
x31
(
x1
(
x1
x32
)
)
⟶
(
x27
x32
x31
=
x24
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
x28
x31
⟶
x4
x31
⟶
(
x7
(
x9
x31
)
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
x28
x31
⟶
x4
x31
⟶
(
x2
(
x9
x31
)
(
x1
(
x5
x31
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
(
x30
x31
⟶
False
)
⟶
(
x11
(
x10
x31
)
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
(
x30
x31
⟶
False
)
⟶
(
x2
(
x10
x31
)
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
x11
(
x12
x31
)
x31
⟶
False
)
⟶
(
∀ x31 .
(
x2
(
x12
x31
)
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
x30
x13
⟶
False
)
⟶
(
∀ x31 .
(
x30
(
x23
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
(
x2
(
x23
x31
)
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
(
x30
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
(
x30
x31
⟶
False
)
⟶
x30
(
x14
x31
)
⟶
False
)
⟶
(
∀ x31 .
(
x30
x31
⟶
False
)
⟶
(
x2
(
x14
x31
)
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x4
x32
⟶
x2
x31
(
x1
(
x5
x32
)
)
⟶
(
x6
x32
(
x6
x32
x31
)
=
x6
x32
x31
⟶
False
)
⟶
False
)
⟶
(
(
x30
x29
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
x30
(
x1
x31
)
⟶
False
)
⟶
(
∀ x31 .
(
x2
(
x21
x31
)
x31
⟶
False
)
⟶
False
)
⟶
(
(
x15
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x20
⟶
False
)
⟶
False
)
⟶
(
∀ x31 .
x4
x31
⟶
(
x15
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x2
x32
(
x1
(
x1
x31
)
)
⟶
(
x2
(
x27
x31
x32
)
(
x1
x31
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x4
x32
⟶
x2
x31
(
x1
(
x5
x32
)
)
⟶
(
x2
(
x6
x32
x31
)
(
x1
(
x5
x32
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x0
(
x19
x31
x32
)
x31
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
(
x0
(
x19
x31
x32
)
x32
⟶
False
)
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 x33 .
x3
x32
x33
⟶
x0
x31
x32
⟶
(
x0
x31
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x3
x32
x31
⟶
x3
x31
x32
⟶
(
x32
=
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x31
=
x32
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x32
=
x31
⟶
(
x3
x32
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x30
x32
⟶
x2
x31
(
x1
x32
)
⟶
x11
x31
x32
⟶
False
)
⟶
(
∀ x31 x32 .
(
x30
x32
⟶
False
)
⟶
x2
x31
(
x1
x32
)
⟶
x30
x31
⟶
(
x11
x31
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
(
x30
x32
⟶
False
)
⟶
x2
x31
(
x1
x32
)
⟶
(
x11
x31
x32
⟶
False
)
⟶
x30
x31
⟶
False
)
⟶
(
∀ x31 x32 .
x30
x32
⟶
x2
x31
(
x1
x32
)
⟶
(
x30
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x31 x32 .
x0
x31
x32
⟶
x0
x32
x31
⟶
False
)
⟶
(
x6
x17
x18
=
x18
⟶
x7
x18
x17
⟶
False
)
⟶
(
x6
x17
x18
=
x18
⟶
(
x6
x17
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
x6
x17
x18
=
x18
⟶
(
x28
x17
⟶
False
)
⟶
False
)
⟶
(
(
x7
x18
x17
⟶
False
)
⟶
x7
x18
x17
⟶
False
)
⟶
(
(
x7
x18
x17
⟶
False
)
⟶
(
x6
x17
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x7
x18
x17
⟶
False
)
⟶
(
x28
x17
⟶
False
)
⟶
False
)
⟶
(
(
x2
x18
(
x1
(
x5
x17
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x4
x17
⟶
False
)
⟶
False
)
⟶
False
...