Search for blocks/addresses/...

Proofgold Asset

asset id
dc74c5c7d2b49dc9a839c02aea320b6a44f0aa135a07af0c2aa1544339487035
asset hash
5ea98434e1ee423e560eb781d05e68976c8204e8e262602452590c30f31a269d
bday / block
36387
tx
fa8d9..
preasset
doc published by PrCmT..
Known df_odz__df_phi__df_pc__df_gz__df_vdwap__df_vdwmc__df_vdwpc__df_ram__df_prmo__df_struct__df_ndx__df_slot__df_base__df_sets__df_ress__df_plusg__df_mulr__df_starv : ∀ x0 : ο . (wceq codz (cmpt (λ x1 . cn) (λ x1 . cmpt (λ x2 . crab (λ x3 . wceq (co (cv x3) (cv x1) cgcd) c1) (λ x3 . cz)) (λ x2 . cinf (crab (λ x3 . wbr (cv x1) (co (co (cv x2) (cv x3) cexp) c1 cmin) cdvds) (λ x3 . cn)) cr clt)))wceq cphi (cmpt (λ x1 . cn) (λ x1 . cfv (crab (λ x2 . wceq (co (cv x2) (cv x1) cgcd) c1) (λ x2 . co c1 (cv x1) cfz)) chash))wceq cpc (cmpt2 (λ x1 x2 . cprime) (λ x1 x2 . cq) (λ x1 x2 . cif (wceq (cv x2) cc0) cpnf (cio (λ x3 . wrex (λ x4 . wrex (λ x5 . wa (wceq (cv x2) (co (cv x4) (cv x5) cdiv)) (wceq (cv x3) (co (csup (crab (λ x6 . wbr (co (cv x1) (cv x6) cexp) (cv x4) cdvds) (λ x6 . cn0)) cr clt) (csup (crab (λ x6 . wbr (co (cv x1) (cv x6) cexp) (cv x5) cdvds) (λ x6 . cn0)) cr clt) cmin))) (λ x5 . cn)) (λ x4 . cz)))))wceq cgz (crab (λ x1 . wa (wcel (cfv (cv x1) cre) cz) (wcel (cfv (cv x1) cim) cz)) (λ x1 . cc))wceq cvdwa (cmpt (λ x1 . cn0) (λ x1 . cmpt2 (λ x2 x3 . cn) (λ x2 x3 . cn) (λ x2 x3 . crn (cmpt (λ x4 . co cc0 (co (cv x1) c1 cmin) cfz) (λ x4 . co (cv x2) (co (cv x4) (cv x3) cmul) caddc)))))wceq cvdwm (copab (λ x1 x2 . wex (λ x3 . wne (cin (crn (cfv (cv x1) cvdwa)) (cpw (cima (ccnv (cv x2)) (csn (cv x3))))) c0)))wceq cvdwp (coprab (λ x1 x2 x3 . wrex (λ x4 . wrex (λ x5 . wa (wral (λ x6 . wss (co (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cfv (cv x6) (cv x5)) (cfv (cv x2) cvdwa)) (cima (ccnv (cv x3)) (csn (cfv (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cv x3))))) (λ x6 . co c1 (cv x1) cfz)) (wceq (cfv (crn (cmpt (λ x6 . co c1 (cv x1) cfz) (λ x6 . cfv (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cv x3)))) chash) (cv x1))) (λ x5 . co cn (co c1 (cv x1) cfz) cmap)) (λ x4 . cn)))wceq cram (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . cinf (crab (λ x3 . ∀ x4 . wbr (cv x3) (cfv (cv x4) chash) clewral (λ x5 . wrex (λ x6 . wrex (λ x7 . wa (wbr (cfv (cv x6) (cv x2)) (cfv (cv x7) chash) cle) (wral (λ x8 . wceq (cfv (cv x8) chash) (cv x1)wceq (cfv (cv x8) (cv x5)) (cv x6)) (λ x8 . cpw (cv x7)))) (λ x7 . cpw (cv x4))) (λ x6 . cdm (cv x2))) (λ x5 . co (cdm (cv x2)) (crab (λ x6 . wceq (cfv (cv x6) chash) (cv x1)) (λ x6 . cpw (cv x4))) cmap)) (λ x3 . cn0)) cxr clt))wceq cprmo (cmpt (λ x1 . cn0) (λ x1 . cprod (λ x2 . co c1 (cv x1) cfz) (λ x2 . cif (wcel (cv x2) cprime) (cv x2) c1)))wceq cstr (copab (λ x1 x2 . w3a (wcel (cv x2) (cin cle (cxp cn cn))) (wfun (cdif (cv x1) (csn c0))) (wss (cdm (cv x1)) (cfv (cv x2) cfz))))wceq cnx (cres cid cn)(∀ x1 : ι → ο . wceq (cslot x1) (cmpt (λ x2 . cvv) (λ x2 . cfv x1 (cv x2))))wceq cbs (cslot c1)wceq csts (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cun (cres (cv x1) (cdif cvv (cdm (csn (cv x2))))) (csn (cv x2))))wceq cress (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cif (wss (cfv (cv x1) cbs) (cv x2)) (cv x1) (co (cv x1) (cop (cfv cnx cbs) (cin (cv x2) (cfv (cv x1) cbs))) csts)))wceq cplusg (cslot c2)wceq cmulr (cslot c3)wceq cstv (cslot c4)x0)x0
Theorem df_odz : wceq codz (cmpt (λ x0 . cn) (λ x0 . cmpt (λ x1 . crab (λ x2 . wceq (co (cv x2) (cv x0) cgcd) c1) (λ x2 . cz)) (λ x1 . cinf (crab (λ x2 . wbr (cv x0) (co (co (cv x1) (cv x2) cexp) c1 cmin) cdvds) (λ x2 . cn)) cr clt)))
...

Theorem df_phi : wceq cphi (cmpt (λ x0 . cn) (λ x0 . cfv (crab (λ x1 . wceq (co (cv x1) (cv x0) cgcd) c1) (λ x1 . co c1 (cv x0) cfz)) chash))
...

Theorem df_pc : wceq cpc (cmpt2 (λ x0 x1 . cprime) (λ x0 x1 . cq) (λ x0 x1 . cif (wceq (cv x1) cc0) cpnf (cio (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x1) (co (cv x3) (cv x4) cdiv)) (wceq (cv x2) (co (csup (crab (λ x5 . wbr (co (cv x0) (cv x5) cexp) (cv x3) cdvds) (λ x5 . cn0)) cr clt) (csup (crab (λ x5 . wbr (co (cv x0) (cv x5) cexp) (cv x4) cdvds) (λ x5 . cn0)) cr clt) cmin))) (λ x4 . cn)) (λ x3 . cz)))))
...

Theorem df_gz : wceq cgz (crab (λ x0 . wa (wcel (cfv (cv x0) cre) cz) (wcel (cfv (cv x0) cim) cz)) (λ x0 . cc))
...

Theorem df_vdwap : wceq cvdwa (cmpt (λ x0 . cn0) (λ x0 . cmpt2 (λ x1 x2 . cn) (λ x1 x2 . cn) (λ x1 x2 . crn (cmpt (λ x3 . co cc0 (co (cv x0) c1 cmin) cfz) (λ x3 . co (cv x1) (co (cv x3) (cv x2) cmul) caddc)))))
...

Theorem df_vdwmc : wceq cvdwm (copab (λ x0 x1 . wex (λ x2 . wne (cin (crn (cfv (cv x0) cvdwa)) (cpw (cima (ccnv (cv x1)) (csn (cv x2))))) c0)))
...

Theorem df_vdwpc : wceq cvdwp (coprab (λ x0 x1 x2 . wrex (λ x3 . wrex (λ x4 . wa (wral (λ x5 . wss (co (co (cv x3) (cfv (cv x5) (cv x4)) caddc) (cfv (cv x5) (cv x4)) (cfv (cv x1) cvdwa)) (cima (ccnv (cv x2)) (csn (cfv (co (cv x3) (cfv (cv x5) (cv x4)) caddc) (cv x2))))) (λ x5 . co c1 (cv x0) cfz)) (wceq (cfv (crn (cmpt (λ x5 . co c1 (cv x0) cfz) (λ x5 . cfv (co (cv x3) (cfv (cv x5) (cv x4)) caddc) (cv x2)))) chash) (cv x0))) (λ x4 . co cn (co c1 (cv x0) cfz) cmap)) (λ x3 . cn)))
...

Theorem df_ram : wceq cram (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cvv) (λ x0 x1 . cinf (crab (λ x2 . ∀ x3 . wbr (cv x2) (cfv (cv x3) chash) clewral (λ x4 . wrex (λ x5 . wrex (λ x6 . wa (wbr (cfv (cv x5) (cv x1)) (cfv (cv x6) chash) cle) (wral (λ x7 . wceq (cfv (cv x7) chash) (cv x0)wceq (cfv (cv x7) (cv x4)) (cv x5)) (λ x7 . cpw (cv x6)))) (λ x6 . cpw (cv x3))) (λ x5 . cdm (cv x1))) (λ x4 . co (cdm (cv x1)) (crab (λ x5 . wceq (cfv (cv x5) chash) (cv x0)) (λ x5 . cpw (cv x3))) cmap)) (λ x2 . cn0)) cxr clt))
...

Theorem df_prmo : wceq cprmo (cmpt (λ x0 . cn0) (λ x0 . cprod (λ x1 . co c1 (cv x0) cfz) (λ x1 . cif (wcel (cv x1) cprime) (cv x1) c1)))
...

Theorem df_struct : wceq cstr (copab (λ x0 x1 . w3a (wcel (cv x1) (cin cle (cxp cn cn))) (wfun (cdif (cv x0) (csn c0))) (wss (cdm (cv x0)) (cfv (cv x1) cfz))))
...

Theorem df_ndx : wceq cnx (cres cid cn)
...

Theorem df_slot : ∀ x0 : ι → ο . wceq (cslot x0) (cmpt (λ x1 . cvv) (λ x1 . cfv x0 (cv x1)))
...

Theorem df_base : wceq cbs (cslot c1)
...

Theorem df_sets : wceq csts (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cun (cres (cv x0) (cdif cvv (cdm (csn (cv x1))))) (csn (cv x1))))
...

Theorem df_ress : wceq cress (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cif (wss (cfv (cv x0) cbs) (cv x1)) (cv x0) (co (cv x0) (cop (cfv cnx cbs) (cin (cv x1) (cfv (cv x0) cbs))) csts)))
...

Theorem df_plusg : wceq cplusg (cslot c2)
...

Theorem df_mulr : wceq cmulr (cslot c3)
...

Theorem df_starv : wceq cstv (cslot c4)
...