Search for blocks/addresses/...

Proofgold Asset

asset id
fd0434875456b5badaaaaf137f215e3c2555b38616c4a0029c1020f036734e6a
asset hash
2a6f219c8bfad6504c9bc3738bf39fa63c3513e02ade13beb8ecee366883bb84
bday / block
28191
tx
1be55..
preasset
doc published by PrQUS..
Param c7ce4.. : ιο
Param SNoSNo : ιο
Param add_SNoadd_SNo : ιιι
Param mul_SNomul_SNo : ιιι
Param 28f8d.. : ιι
Param minus_SNominus_SNo : ιι
Param d634d.. : ιι
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known 85533.. : ∀ x0 . c7ce4.. x0SNo (28f8d.. x0)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known eb0da.. : ∀ x0 . c7ce4.. x0SNo (d634d.. x0)
Theorem e197b.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1SNo (add_SNo (mul_SNo (28f8d.. x0) (28f8d.. x1)) (minus_SNo (mul_SNo (d634d.. x0) (d634d.. x1))))
...

Theorem 484b2.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1SNo (add_SNo (mul_SNo (28f8d.. x0) (d634d.. x1)) (mul_SNo (d634d.. x0) (28f8d.. x1)))
...

Param ad280.. : ιιι
Definition 22598.. := λ x0 x1 . ad280.. (add_SNo (mul_SNo (28f8d.. x0) (28f8d.. x1)) (minus_SNo (mul_SNo (d634d.. x0) (d634d.. x1)))) (add_SNo (mul_SNo (28f8d.. x0) (d634d.. x1)) (mul_SNo (d634d.. x0) (28f8d.. x1)))
Known 1c01b.. : ∀ x0 x1 . SNo x0SNo x128f8d.. (ad280.. x0 x1) = x0
Theorem d5374.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x128f8d.. (22598.. x0 x1) = add_SNo (mul_SNo (28f8d.. x0) (28f8d.. x1)) (minus_SNo (mul_SNo (d634d.. x0) (d634d.. x1)))
...

Known 5b520.. : ∀ x0 x1 . SNo x0SNo x1d634d.. (ad280.. x0 x1) = x1
Theorem c5063.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1d634d.. (22598.. x0 x1) = add_SNo (mul_SNo (28f8d.. x0) (d634d.. x1)) (mul_SNo (d634d.. x0) (28f8d.. x1))
...

Known e4080.. : ∀ x0 x1 . SNo x0SNo x1c7ce4.. (ad280.. x0 x1)
Theorem 03ef2.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1c7ce4.. (22598.. x0 x1)
...

Known 371c6.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x128f8d.. x0 = 28f8d.. x1d634d.. x0 = d634d.. x1x0 = x1
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Theorem 8d8ef.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x122598.. x0 x1 = 22598.. x1 x0
...

Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_minus_distrRmul_SNo_minus_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2))
Known add_SNo_rotate_4_0312add_SNo_rotate_4_0312 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x3) (add_SNo x1 x2)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Theorem 76b9f.. : ∀ x0 x1 x2 . c7ce4.. x0c7ce4.. x1c7ce4.. x222598.. x0 (22598.. x1 x2) = 22598.. (22598.. x0 x1) x2
...

Known 2c33a.. : ∀ x0 . SNo x0c7ce4.. x0
Known SNo_0SNo_0 : SNo 0
Theorem feda5.. : c7ce4.. 0
...

Param ordsuccordsucc : ιι
Known SNo_1SNo_1 : SNo 1
Theorem 187f6.. : c7ce4.. 1
...

Known 43bcd.. : ∀ x0 . ad280.. x0 0 = x0
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem 7a36e.. : ∀ x0 . c7ce4.. x022598.. 1 x0 = x0
...

Theorem 9dbc9.. : ∀ x0 . c7ce4.. x022598.. x0 1 = x0
...

Param a0628.. : ιιι
Known 33aee.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1c7ce4.. (a0628.. x0 x1)
Known 5576f.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x128f8d.. (a0628.. x0 x1) = add_SNo (28f8d.. x0) (28f8d.. x1)
Known 9325f.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1d634d.. (a0628.. x0 x1) = add_SNo (d634d.. x0) (d634d.. x1)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Theorem 610b0.. : ∀ x0 x1 x2 . c7ce4.. x0c7ce4.. x1c7ce4.. x222598.. x0 (a0628.. x1 x2) = a0628.. (22598.. x0 x1) (22598.. x0 x2)
...

Known 416cf.. : ∀ x0 . SNo x028f8d.. x0 = x0
Known 0de29.. : ∀ x0 . SNo x0d634d.. x0 = 0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Theorem a2ab6.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = 22598.. x0 x1
...

Param 8d0f8.. : ι
Param b1848.. : ιι
Known 3e3aa.. : c7ce4.. 8d0f8..
Known 76017.. : ∀ x0 . c7ce4.. x0c7ce4.. (b1848.. x0)
Known d3d48.. : ∀ x0 . c7ce4.. x028f8d.. (b1848.. x0) = minus_SNo (28f8d.. x0)
Known f16c1.. : 28f8d.. 8d0f8.. = 0
Known b2ead.. : d634d.. 8d0f8.. = 1
Known 7d0dc.. : 28f8d.. 1 = 1
Known d1304.. : ∀ x0 . c7ce4.. x0d634d.. (b1848.. x0) = minus_SNo (d634d.. x0)
Known d3315.. : d634d.. 1 = 0
Theorem e377b.. : 22598.. 8d0f8.. 8d0f8.. = b1848.. 1
...

Param recip_SNorecip_SNo : ιι
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Param exp_SNo_natexp_SNo_nat : ιιι
Definition 41fb9.. := λ x0 . ad280.. (div_SNo (28f8d.. x0) (add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2))) (minus_SNo (div_SNo (d634d.. x0) (add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2))))
Known SNo_div_SNoSNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1)
Param nat_pnat_p : ιο
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Theorem b7add.. : ∀ x0 . c7ce4.. x0c7ce4.. (41fb9.. x0)
...

Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Theorem 9f4eb.. : ∀ x0 . c7ce4.. x0∀ x1 . SNo x1mul_SNo (add_SNo (mul_SNo (28f8d.. x0) (28f8d.. x0)) (mul_SNo (d634d.. x0) (d634d.. x0))) x1 = 122598.. x0 (a0628.. (22598.. x1 (28f8d.. x0)) (b1848.. (22598.. 8d0f8.. (22598.. x1 (d634d.. x0))))) = 1
...

Known exp_SNo_nat_2exp_SNo_nat_2 : ∀ x0 . SNo x0exp_SNo_nat x0 2 = mul_SNo x0 x0
Theorem e1625.. : ∀ x0 . c7ce4.. x0∀ x1 . SNo x1mul_SNo (add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2)) x1 = 122598.. x0 (a0628.. (22598.. x1 (28f8d.. x0)) (b1848.. (22598.. 8d0f8.. (22598.. x1 (d634d.. x0))))) = 1
...

Known 6c4fc.. : 28f8d.. 0 = 0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLtSNoLt : ιιο
Known SNo_zero_or_sqr_pos'SNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (exp_SNo_nat x0 2))
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Param SNoLeSNoLe : ιιο
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_sqr_nonneg'SNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (exp_SNo_nat x0 2)
Known 1c92a.. : d634d.. 0 = 0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Theorem 64e45.. : ∀ x0 . c7ce4.. x0add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2) = 0x0 = 0
...

Known recip_SNo_invRrecip_SNo_invR : ∀ x0 . SNo x0(x0 = 0∀ x1 : ο . x1)mul_SNo x0 (recip_SNo x0) = 1
Known SNo_recip_SNoSNo_recip_SNo : ∀ x0 . SNo x0SNo (recip_SNo x0)
Theorem a0e5c.. : ∀ x0 . c7ce4.. x0(x0 = 0∀ x1 : ο . x1)22598.. x0 (41fb9.. x0) = 1
...

Theorem 607f7.. : ∀ x0 . c7ce4.. x0(x0 = 0∀ x1 : ο . x1)22598.. (41fb9.. x0) x0 = 1
...

Definition 74066.. := λ x0 x1 . 22598.. x0 (41fb9.. x1)
Theorem e6598.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1c7ce4.. (74066.. x0 x1)
...

Theorem bd3b2.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1(x1 = 0∀ x2 : ο . x2)22598.. (74066.. x0 x1) x1 = x0
...

Theorem 662fb.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1(x1 = 0∀ x2 : ο . x2)22598.. x1 (74066.. x0 x1) = x0
...