Search for blocks/addresses/...
Proofgold Asset
asset id
fd0434875456b5badaaaaf137f215e3c2555b38616c4a0029c1020f036734e6a
asset hash
2a6f219c8bfad6504c9bc3738bf39fa63c3513e02ade13beb8ecee366883bb84
bday / block
28191
tx
1be55..
preasset
doc published by
PrQUS..
Param
c7ce4..
:
ι
→
ο
Param
SNo
SNo
:
ι
→
ο
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
28f8d..
:
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
d634d..
:
ι
→
ι
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
85533..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
28f8d..
x0
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
eb0da..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
d634d..
x0
)
Theorem
e197b..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
SNo
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
minus_SNo
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
)
)
...
Theorem
484b2..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
SNo
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
d634d..
x1
)
)
(
mul_SNo
(
d634d..
x0
)
(
28f8d..
x1
)
)
)
...
Param
ad280..
:
ι
→
ι
→
ι
Definition
22598..
:=
λ x0 x1 .
ad280..
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
minus_SNo
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
)
)
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
d634d..
x1
)
)
(
mul_SNo
(
d634d..
x0
)
(
28f8d..
x1
)
)
)
Known
1c01b..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
28f8d..
(
ad280..
x0
x1
)
=
x0
Theorem
d5374..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
(
22598..
x0
x1
)
=
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
minus_SNo
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
)
...
Known
5b520..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
d634d..
(
ad280..
x0
x1
)
=
x1
Theorem
c5063..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
d634d..
(
22598..
x0
x1
)
=
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
d634d..
x1
)
)
(
mul_SNo
(
d634d..
x0
)
(
28f8d..
x1
)
)
...
Known
e4080..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
c7ce4..
(
ad280..
x0
x1
)
Theorem
03ef2..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
(
22598..
x0
x1
)
...
Known
371c6..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
x0
=
28f8d..
x1
⟶
d634d..
x0
=
d634d..
x1
⟶
x0
=
x1
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
8d8ef..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
22598..
x0
x1
=
22598..
x1
x0
...
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
mul_SNo_minus_distrR
mul_SNo_minus_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_mul_SNo_3
SNo_mul_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
mul_SNo
x0
(
mul_SNo
x1
x2
)
)
Known
add_SNo_rotate_4_0312
add_SNo_rotate_4_0312
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x3
)
(
add_SNo
x1
x2
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Theorem
76b9f..
:
∀ x0 x1 x2 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
x2
⟶
22598..
x0
(
22598..
x1
x2
)
=
22598..
(
22598..
x0
x1
)
x2
...
Known
2c33a..
:
∀ x0 .
SNo
x0
⟶
c7ce4..
x0
Known
SNo_0
SNo_0
:
SNo
0
Theorem
feda5..
:
c7ce4..
0
...
Param
ordsucc
ordsucc
:
ι
→
ι
Known
SNo_1
SNo_1
:
SNo
1
Theorem
187f6..
:
c7ce4..
1
...
Known
43bcd..
:
∀ x0 .
ad280..
x0
0
=
x0
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
7a36e..
:
∀ x0 .
c7ce4..
x0
⟶
22598..
1
x0
=
x0
...
Theorem
9dbc9..
:
∀ x0 .
c7ce4..
x0
⟶
22598..
x0
1
=
x0
...
Param
a0628..
:
ι
→
ι
→
ι
Known
33aee..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
(
a0628..
x0
x1
)
Known
5576f..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
(
a0628..
x0
x1
)
=
add_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
Known
9325f..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
d634d..
(
a0628..
x0
x1
)
=
add_SNo
(
d634d..
x0
)
(
d634d..
x1
)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Theorem
610b0..
:
∀ x0 x1 x2 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
x2
⟶
22598..
x0
(
a0628..
x1
x2
)
=
a0628..
(
22598..
x0
x1
)
(
22598..
x0
x2
)
...
Known
416cf..
:
∀ x0 .
SNo
x0
⟶
28f8d..
x0
=
x0
Known
0de29..
:
∀ x0 .
SNo
x0
⟶
d634d..
x0
=
0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Theorem
a2ab6..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
22598..
x0
x1
...
Param
8d0f8..
:
ι
Param
b1848..
:
ι
→
ι
Known
3e3aa..
:
c7ce4..
8d0f8..
Known
76017..
:
∀ x0 .
c7ce4..
x0
⟶
c7ce4..
(
b1848..
x0
)
Known
d3d48..
:
∀ x0 .
c7ce4..
x0
⟶
28f8d..
(
b1848..
x0
)
=
minus_SNo
(
28f8d..
x0
)
Known
f16c1..
:
28f8d..
8d0f8..
=
0
Known
b2ead..
:
d634d..
8d0f8..
=
1
Known
7d0dc..
:
28f8d..
1
=
1
Known
d1304..
:
∀ x0 .
c7ce4..
x0
⟶
d634d..
(
b1848..
x0
)
=
minus_SNo
(
d634d..
x0
)
Known
d3315..
:
d634d..
1
=
0
Theorem
e377b..
:
22598..
8d0f8..
8d0f8..
=
b1848..
1
...
Param
recip_SNo
recip_SNo
:
ι
→
ι
Definition
div_SNo
div_SNo
:=
λ x0 x1 .
mul_SNo
x0
(
recip_SNo
x1
)
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Definition
41fb9..
:=
λ x0 .
ad280..
(
div_SNo
(
28f8d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
(
minus_SNo
(
div_SNo
(
d634d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
)
Known
SNo_div_SNo
SNo_div_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
div_SNo
x0
x1
)
Param
nat_p
nat_p
:
ι
→
ο
Known
SNo_exp_SNo_nat
SNo_exp_SNo_nat
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNo
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Theorem
b7add..
:
∀ x0 .
c7ce4..
x0
⟶
c7ce4..
(
41fb9..
x0
)
...
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
mul_SNo_com_3_0_1
mul_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x0
x2
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
9f4eb..
:
∀ x0 .
c7ce4..
x0
⟶
∀ x1 .
SNo
x1
⟶
mul_SNo
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x0
)
)
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x0
)
)
)
x1
=
1
⟶
22598..
x0
(
a0628..
(
22598..
x1
(
28f8d..
x0
)
)
(
b1848..
(
22598..
8d0f8..
(
22598..
x1
(
d634d..
x0
)
)
)
)
)
=
1
...
Known
exp_SNo_nat_2
exp_SNo_nat_2
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
2
=
mul_SNo
x0
x0
Theorem
e1625..
:
∀ x0 .
c7ce4..
x0
⟶
∀ x1 .
SNo
x1
⟶
mul_SNo
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
x1
=
1
⟶
22598..
x0
(
a0628..
(
22598..
x1
(
28f8d..
x0
)
)
(
b1848..
(
22598..
8d0f8..
(
22598..
x1
(
d634d..
x0
)
)
)
)
)
=
1
...
Known
6c4fc..
:
28f8d..
0
=
0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNo_zero_or_sqr_pos'
SNo_zero_or_sqr_pos
:
∀ x0 .
SNo
x0
⟶
or
(
x0
=
0
)
(
SNoLt
0
(
exp_SNo_nat
x0
2
)
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNo_sqr_nonneg'
SNo_sqr_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
(
exp_SNo_nat
x0
2
)
Known
1c92a..
:
d634d..
0
=
0
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Theorem
64e45..
:
∀ x0 .
c7ce4..
x0
⟶
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
=
0
⟶
x0
=
0
...
Known
recip_SNo_invR
recip_SNo_invR
:
∀ x0 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
mul_SNo
x0
(
recip_SNo
x0
)
=
1
Known
SNo_recip_SNo
SNo_recip_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
recip_SNo
x0
)
Theorem
a0e5c..
:
∀ x0 .
c7ce4..
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
22598..
x0
(
41fb9..
x0
)
=
1
...
Theorem
607f7..
:
∀ x0 .
c7ce4..
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
22598..
(
41fb9..
x0
)
x0
=
1
...
Definition
74066..
:=
λ x0 x1 .
22598..
x0
(
41fb9..
x1
)
Theorem
e6598..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
(
74066..
x0
x1
)
...
Theorem
bd3b2..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
22598..
(
74066..
x0
x1
)
x1
=
x0
...
Theorem
662fb..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
22598..
x1
(
74066..
x0
x1
)
=
x0
...