Search for blocks/addresses/...

Proofgold Asset

asset id
ff9d2e610df5defdb9a5d01386b345c602b037c37c1da8d176754d85ac4de976
asset hash
6861d621b067e4609bf27e92de5ac58307143a0d396e7927f329b1b145feaaa1
bday / block
36378
tx
a24a7..
preasset
doc published by PrCmT..
Known df_zrng__df_gf__df_gfoo__df_eqp__df_rqp__df_qp__df_qpOLD__df_zp__df_qpa__df_cp__df_trpred__df_wsuc__df_wlim__df_frecs__df_no__df_slt__df_bday__df_sle : ∀ x0 : ο . (wceq czr (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (crn (cfv (cv x1) czrh)) citr))wceq cgf (cmpt2 (λ x1 x2 . cprime) (λ x1 x2 . cn) (λ x1 x2 . csb (cfv (cv x1) czn) (λ x3 . cfv (co (cv x3) (csn (csb (cfv (cv x3) cpl1) (λ x4 . csb (cfv (cv x3) cv1) (λ x5 . co (co (co (cv x1) (cv x2) cexp) (cv x5) (cfv (cfv (cv x4) cmgp) cmg)) (cv x5) (cfv (cv x4) csg))))) csf) c1st)))wceq cgfo (cmpt (λ x1 . cprime) (λ x1 . csb (cfv (cv x1) czn) (λ x2 . co (cv x2) (cmpt (λ x3 . cn) (λ x3 . csn (csb (cfv (cv x2) cpl1) (λ x4 . csb (cfv (cv x2) cv1) (λ x5 . co (co (co (cv x1) (cv x3) cexp) (cv x5) (cfv (cfv (cv x4) cmgp) cmg)) (cv x5) (cfv (cv x4) csg)))))) cpsl)))wceq ceqp (cmpt (λ x1 . cprime) (λ x1 . copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (co cz cz cmap)) (wral (λ x4 . wcel (csu (cfv (cneg (cv x4)) cuz) (λ x5 . co (co (cfv (cneg (cv x5)) (cv x2)) (cfv (cneg (cv x5)) (cv x3)) cmin) (co (cv x1) (co (cv x5) (co (cv x4) c1 caddc) caddc) cexp) cdiv)) cz) (λ x4 . cz)))))wceq crqp (cmpt (λ x1 . cprime) (λ x1 . cin ceqp (csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz cz cmap)) (λ x2 . cxp (cv x2) (cin (cv x2) (co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap))))))wceq cqp (cmpt (λ x1 . cprime) (λ x1 . csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap)) (λ x2 . co (cun (ctp (cop (cfv cnx cbs) (cv x2)) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cof caddc)) (cfv (cv x1) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (cmpt (λ x5 . cz) (λ x5 . csu cz (λ x6 . co (cfv (cv x6) (cv x3)) (cfv (co (cv x5) (cv x6) cmin) (cv x4)) cmul))) (cfv (cv x1) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x3 x4 . wa (wss (cpr (cv x3) (cv x4)) (cv x2)) (wbr (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x3)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x4)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) clt)))))) (cmpt (λ x3 . cv x2) (λ x3 . cif (wceq (cv x3) (cxp cz (csn cc0))) cc0 (co (cv x1) (cneg (cinf (cima (ccnv (cv x3)) (cdif cz (csn cc0))) cr clt)) cexp))) ctng)))wceq cqpOLD (cmpt (λ x1 . cprime) (λ x1 . csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap)) (λ x2 . co (cun (ctp (cop (cfv cnx cbs) (cv x2)) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cof caddc)) (cfv (cv x1) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (cmpt (λ x5 . cz) (λ x5 . csu cz (λ x6 . co (cfv (cv x6) (cv x3)) (cfv (co (cv x5) (cv x6) cmin) (cv x4)) cmul))) (cfv (cv x1) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x3 x4 . wa (wss (cpr (cv x3) (cv x4)) (cv x2)) (wbr (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x3)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x4)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) clt)))))) (cmpt (λ x3 . cv x2) (λ x3 . cif (wceq (cv x3) (cxp cz (csn cc0))) cc0 (co (cv x1) (cneg (csup (cima (ccnv (cv x3)) (cdif cz (csn cc0))) cr (ccnv clt))) cexp))) ctng)))wceq czp (ccom czr cqp)wceq cqpa (cmpt (λ x1 . cprime) (λ x1 . csb (cfv (cv x1) cqp) (λ x2 . co (cv x2) (cmpt (λ x3 . cn) (λ x3 . crab (λ x4 . wa (wbr (co (cv x2) (cv x4) cdg1) (cv x3) cle) (wral (λ x5 . wss (cima (ccnv (cv x5)) (cdif cz (csn cc0))) (co cc0 (cv x3) cfz)) (λ x5 . crn (cfv (cv x4) cco1)))) (λ x4 . cfv (cv x2) cpl1))) cpsl)))wceq ccp (ccom ccpms cqpa)(∀ x1 x2 x3 : ι → ο . wceq (ctrpred x1 x2 x3) (cuni (crn (cres (crdg (cmpt (λ x4 . cvv) (λ x4 . ciun (λ x5 . cv x4) (λ x5 . cpred x1 x2 (cv x5)))) (cpred x1 x2 x3)) com))))(∀ x1 x2 x3 : ι → ο . wceq (cwsuc x1 x2 x3) (cinf (cpred x1 (ccnv x2) x3) x1 x2))(∀ x1 x2 : ι → ο . wceq (cwlim x1 x2) (crab (λ x3 . wa (wne (cv x3) (cinf x1 x1 x2)) (wceq (cv x3) (csup (cpred x1 x2 (cv x3)) x1 x2))) (λ x3 . x1)))(∀ x1 x2 x3 : ι → ο . wceq (cfrecs x1 x2 x3) (cuni (cab (λ x4 . wex (λ x5 . w3a (wfn (cv x4) (cv x5)) (wa (wss (cv x5) x1) (wral (λ x6 . wss (cpred x1 x2 (cv x6)) (cv x5)) (λ x6 . cv x5))) (wral (λ x6 . wceq (cfv (cv x6) (cv x4)) (co (cv x6) (cres (cv x4) (cpred x1 x2 (cv x6))) x3)) (λ x6 . cv x5)))))))wceq csur (cab (λ x1 . wrex (λ x2 . wf (cv x2) (cpr c1o c2o) (cv x1)) (λ x2 . con0)))wceq cslt (copab (λ x1 x2 . wa (wa (wcel (cv x1) csur) (wcel (cv x2) csur)) (wrex (λ x3 . wa (wral (λ x4 . wceq (cfv (cv x4) (cv x1)) (cfv (cv x4) (cv x2))) (λ x4 . cv x3)) (wbr (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) (ctp (cop c1o c0) (cop c1o c2o) (cop c0 c2o)))) (λ x3 . con0))))wceq cbday (cmpt (λ x1 . csur) (λ x1 . cdm (cv x1)))wceq csle (cdif (cxp csur csur) (ccnv cslt))x0)x0
Theorem df_zrng : wceq czr (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) (crn (cfv (cv x0) czrh)) citr))
...

Theorem df_gf : wceq cgf (cmpt2 (λ x0 x1 . cprime) (λ x0 x1 . cn) (λ x0 x1 . csb (cfv (cv x0) czn) (λ x2 . cfv (co (cv x2) (csn (csb (cfv (cv x2) cpl1) (λ x3 . csb (cfv (cv x2) cv1) (λ x4 . co (co (co (cv x0) (cv x1) cexp) (cv x4) (cfv (cfv (cv x3) cmgp) cmg)) (cv x4) (cfv (cv x3) csg))))) csf) c1st)))
...

Theorem df_gfoo : wceq cgfo (cmpt (λ x0 . cprime) (λ x0 . csb (cfv (cv x0) czn) (λ x1 . co (cv x1) (cmpt (λ x2 . cn) (λ x2 . csn (csb (cfv (cv x1) cpl1) (λ x3 . csb (cfv (cv x1) cv1) (λ x4 . co (co (co (cv x0) (cv x2) cexp) (cv x4) (cfv (cfv (cv x3) cmgp) cmg)) (cv x4) (cfv (cv x3) csg)))))) cpsl)))
...

Theorem df_eqp : wceq ceqp (cmpt (λ x0 . cprime) (λ x0 . copab (λ x1 x2 . wa (wss (cpr (cv x1) (cv x2)) (co cz cz cmap)) (wral (λ x3 . wcel (csu (cfv (cneg (cv x3)) cuz) (λ x4 . co (co (cfv (cneg (cv x4)) (cv x1)) (cfv (cneg (cv x4)) (cv x2)) cmin) (co (cv x0) (co (cv x4) (co (cv x3) c1 caddc) caddc) cexp) cdiv)) cz) (λ x3 . cz)))))
...

Theorem df_rqp : wceq crqp (cmpt (λ x0 . cprime) (λ x0 . cin ceqp (csb (crab (λ x1 . wrex (λ x2 . wss (cima (ccnv (cv x1)) (cdif cz (csn cc0))) (cv x2)) (λ x2 . crn cuz)) (λ x1 . co cz cz cmap)) (λ x1 . cxp (cv x1) (cin (cv x1) (co cz (co cc0 (co (cv x0) c1 cmin) cfz) cmap))))))
...

Theorem df_qp : wceq cqp (cmpt (λ x0 . cprime) (λ x0 . csb (crab (λ x1 . wrex (λ x2 . wss (cima (ccnv (cv x1)) (cdif cz (csn cc0))) (cv x2)) (λ x2 . crn cuz)) (λ x1 . co cz (co cc0 (co (cv x0) c1 cmin) cfz) cmap)) (λ x1 . co (cun (ctp (cop (cfv cnx cbs) (cv x1)) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cv x1) (λ x2 x3 . cv x1) (λ x2 x3 . cfv (co (cv x2) (cv x3) (cof caddc)) (cfv (cv x0) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x2 x3 . cv x1) (λ x2 x3 . cv x1) (λ x2 x3 . cfv (cmpt (λ x4 . cz) (λ x4 . csu cz (λ x5 . co (cfv (cv x5) (cv x2)) (cfv (co (cv x4) (cv x5) cmin) (cv x3)) cmul))) (cfv (cv x0) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (cv x1)) (wbr (csu cz (λ x4 . co (cfv (cneg (cv x4)) (cv x2)) (co (co (cv x0) c1 caddc) (cneg (cv x4)) cexp) cmul)) (csu cz (λ x4 . co (cfv (cneg (cv x4)) (cv x3)) (co (co (cv x0) c1 caddc) (cneg (cv x4)) cexp) cmul)) clt)))))) (cmpt (λ x2 . cv x1) (λ x2 . cif (wceq (cv x2) (cxp cz (csn cc0))) cc0 (co (cv x0) (cneg (cinf (cima (ccnv (cv x2)) (cdif cz (csn cc0))) cr clt)) cexp))) ctng)))
...

Theorem df_qpOLD : wceq cqpOLD (cmpt (λ x0 . cprime) (λ x0 . csb (crab (λ x1 . wrex (λ x2 . wss (cima (ccnv (cv x1)) (cdif cz (csn cc0))) (cv x2)) (λ x2 . crn cuz)) (λ x1 . co cz (co cc0 (co (cv x0) c1 cmin) cfz) cmap)) (λ x1 . co (cun (ctp (cop (cfv cnx cbs) (cv x1)) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cv x1) (λ x2 x3 . cv x1) (λ x2 x3 . cfv (co (cv x2) (cv x3) (cof caddc)) (cfv (cv x0) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x2 x3 . cv x1) (λ x2 x3 . cv x1) (λ x2 x3 . cfv (cmpt (λ x4 . cz) (λ x4 . csu cz (λ x5 . co (cfv (cv x5) (cv x2)) (cfv (co (cv x4) (cv x5) cmin) (cv x3)) cmul))) (cfv (cv x0) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (cv x1)) (wbr (csu cz (λ x4 . co (cfv (cneg (cv x4)) (cv x2)) (co (co (cv x0) c1 caddc) (cneg (cv x4)) cexp) cmul)) (csu cz (λ x4 . co (cfv (cneg (cv x4)) (cv x3)) (co (co (cv x0) c1 caddc) (cneg (cv x4)) cexp) cmul)) clt)))))) (cmpt (λ x2 . cv x1) (λ x2 . cif (wceq (cv x2) (cxp cz (csn cc0))) cc0 (co (cv x0) (cneg (csup (cima (ccnv (cv x2)) (cdif cz (csn cc0))) cr (ccnv clt))) cexp))) ctng)))
...

Theorem df_zp : wceq czp (ccom czr cqp)
...

Theorem df_qpa : wceq cqpa (cmpt (λ x0 . cprime) (λ x0 . csb (cfv (cv x0) cqp) (λ x1 . co (cv x1) (cmpt (λ x2 . cn) (λ x2 . crab (λ x3 . wa (wbr (co (cv x1) (cv x3) cdg1) (cv x2) cle) (wral (λ x4 . wss (cima (ccnv (cv x4)) (cdif cz (csn cc0))) (co cc0 (cv x2) cfz)) (λ x4 . crn (cfv (cv x3) cco1)))) (λ x3 . cfv (cv x1) cpl1))) cpsl)))
...

Theorem df_cp : wceq ccp (ccom ccpms cqpa)
...

Theorem df_trpred : ∀ x0 x1 x2 : ι → ο . wceq (ctrpred x0 x1 x2) (cuni (crn (cres (crdg (cmpt (λ x3 . cvv) (λ x3 . ciun (λ x4 . cv x3) (λ x4 . cpred x0 x1 (cv x4)))) (cpred x0 x1 x2)) com)))
...

Theorem df_wsuc : ∀ x0 x1 x2 : ι → ο . wceq (cwsuc x0 x1 x2) (cinf (cpred x0 (ccnv x1) x2) x0 x1)
...

Theorem df_wlim : ∀ x0 x1 : ι → ο . wceq (cwlim x0 x1) (crab (λ x2 . wa (wne (cv x2) (cinf x0 x0 x1)) (wceq (cv x2) (csup (cpred x0 x1 (cv x2)) x0 x1))) (λ x2 . x0))
...

Theorem df_frecs : ∀ x0 x1 x2 : ι → ο . wceq (cfrecs x0 x1 x2) (cuni (cab (λ x3 . wex (λ x4 . w3a (wfn (cv x3) (cv x4)) (wa (wss (cv x4) x0) (wral (λ x5 . wss (cpred x0 x1 (cv x5)) (cv x4)) (λ x5 . cv x4))) (wral (λ x5 . wceq (cfv (cv x5) (cv x3)) (co (cv x5) (cres (cv x3) (cpred x0 x1 (cv x5))) x2)) (λ x5 . cv x4))))))
...

Theorem df_no : wceq csur (cab (λ x0 . wrex (λ x1 . wf (cv x1) (cpr c1o c2o) (cv x0)) (λ x1 . con0)))
...

Theorem df_slt : wceq cslt (copab (λ x0 x1 . wa (wa (wcel (cv x0) csur) (wcel (cv x1) csur)) (wrex (λ x2 . wa (wral (λ x3 . wceq (cfv (cv x3) (cv x0)) (cfv (cv x3) (cv x1))) (λ x3 . cv x2)) (wbr (cfv (cv x2) (cv x0)) (cfv (cv x2) (cv x1)) (ctp (cop c1o c0) (cop c1o c2o) (cop c0 c2o)))) (λ x2 . con0))))
...

Theorem df_bday : wceq cbday (cmpt (λ x0 . csur) (λ x0 . cdm (cv x0)))
...

Theorem df_sle : wceq csle (cdif (cxp csur csur) (ccnv cslt))
...