∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 x8 x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x9) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ (∃ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11)) ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . ∀ x10 : ο . (x9 ∈ x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12 ∈ x0 ⟶ (∃ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14)) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12) ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) ⟶ x8 = x9) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (x3 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))))) (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12)) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13 ∈ x0 ⟶ (∃ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15)) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10 ∈ x0 ⟶ (∃ x12 . and (x12 ∈ x0) (x9 = x6 x10 x12)) ⟶ x11) ⟶ x11)))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) ⟶ x7) ⟶ x7 |
|