∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 : ι → ο . (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x8 = x6 x10 x11 ⟶ x9 (x6 x10 x11)) ⟶ x9 x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 x8 x9 = x6 x11 x12))) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) x11)) = x9) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x8 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x6 x8 x1 ∈ {x9 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6|x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))) x1 = x9}) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12))) = prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))) ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)) = prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)) ⟶ x8 = x9) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11)) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) = x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))) = x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)) = x3 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10))))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) ∈ x0) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))))) ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))) = x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) ⟶ (∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)) = x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))))) ⟶ x7) ⟶ x7 |
|