∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . ∀ x7 . (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 x8 x9 = x6 x10 x11 ⟶ and (x8 = x10) (x9 = x11)) ⟶ explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x3 x8 x9 = x3 x9 x8) ⟶ x1 ∈ x0 ⟶ (∀ x8 . x8 ∈ x0 ⟶ x3 x1 x8 = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x4 x8 x9 ∈ x0) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 x8 x9 = x6 x11 x12))) = x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x6 x8 x1 ∈ {x9 ∈ x7|x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12)))) x1 = x9}) ⟶ (∀ x8 . x8 ∈ x7 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))) ∈ x0) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11)) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10))) ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1 ⟶ (∀ x8 . x8 ∈ x0 ⟶ x4 x1 x8 = x1) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x4 x8 x1 = x1) ⟶ explicit_Reals {x8 ∈ x7|x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) x1 = x8} (x6 x1 x1) (x6 x2 x1) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))))) (λ x8 x9 . x5 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11))))) |
|