Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . ∀ x7 . (∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 x8 x9 = x6 x10 x11and (x8 = x10) (x9 = x11))explicit_Reals x0 x1 x2 x3 x4 x5(∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9 = x3 x9 x8)x1x0(∀ x8 . x8x0x3 x1 x8 = x8)(∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9x0)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 x8 x9 = x6 x11 x12))) = x8)(∀ x8 . x8x0x6 x8 x1{x9 ∈ x7|x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))) x1 = x9})(∀ x8 . x8x7prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))x0)(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x8 . x8x0x4 x1 x8 = x1)(∀ x8 . x8x0x4 x8 x1 = x1)explicit_Reals {x8 ∈ x7|x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) x1 = x8} (x6 x1 x1) (x6 x2 x1) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))))) (λ x8 x9 . x5 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))
type
prop
theory
HotG
name
-
proof
PUZ3f..
Megalodon
-
proofgold address
TMNrn..
creator
4948 Pr6Pc../da063..
owner
4948 Pr6Pc../da063..
term root
0408a..