Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4Dz..
/
d5112..
PUNw1..
/
0157d..
vout
Pr4Dz..
/
a1948..
4,594.37 bars
PUcbL..
/
7e967..
signature published by
PrCmT..
Import Signature
9b853..
Param
7736c..
Inj1
:
ι
→
ι
Param
7d54b..
Inj0
:
ι
→
ι
Param
aa7bb..
combine_funcs
:
ι
→
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
a0730..
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
39338..
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Param
5b7e0..
setsum
:
ι
→
ι
→
ι
Known
246ac..
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
2b4f9..
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Known
a3640..
setsum_Inj_inv
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∃ x3 .
and
(
x3
∈
x0
)
(
x2
=
Inj0
x3
)
)
(
∃ x3 .
and
(
x3
∈
x1
)
(
x2
=
Inj1
x3
)
)
Param
d64bc..
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Def
107b6..
setprod
:
ι
→
ι
→
ι
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
a4d82..
ap
:
ι
→
ι
→
ι
Param
a7b1b..
Pi
:
ι
→
(
ι
→
ι
) →
ι
Def
021ae..
setexp
:
ι
→
ι
→
ι
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
9bd10..
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
de381..
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Known
1f9d7..
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Known
d965e..
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
ad903..
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
2c0ad..
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
0a4f5..
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
14ea6..
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
f69c0..
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
fe562..
tuple_4_0_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
0
=
x0
Known
bf73b..
tuple_4_1_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
1
=
x1
Known
7d442..
tuple_4_2_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
2
=
x2
Known
1a82d..
tuple_4_3_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
3
=
x3
Known
2eb5d..
tuple_5_0_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
0
=
x0
Known
49b93..
tuple_5_1_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
1
=
x1
Known
3bb23..
tuple_5_2_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
2
=
x2
Known
52772..
tuple_5_3_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
3
=
x3
Known
39fb6..
tuple_5_4_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
4
=
x4
Known
b5182..
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
15b71..
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Param
3c7a5..
pack_u
:
ι
→
(
ι
→
ι
) →
ι
Param
df064..
struct_u
:
ι
→
ο
Known
7eff9..
pack_u_0_eq2
:
∀ x0 .
∀ x1 :
ι → ι
.
x0
=
ap
(
pack_u
x0
x1
)
0
Known
9556d..
pack_struct_u_I
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
struct_u
(
pack_u
x0
x1
)
Param
9b53a..
unpack_u_i
:
ι
→
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
Known
133f4..
unpack_u_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_i
(
pack_u
x1
x2
)
x0
=
x0
x1
x2
Param
8b490..
unpack_u_o
:
ι
→
(
ι
→
(
ι
→
ι
) →
ο
) →
ο
Known
3daff..
unpack_u_o_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_o
(
pack_u
x1
x2
)
x0
=
x0
x1
x2