Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr91C..
/
2dd30..
PUfaY..
/
6e17e..
vout
Pr91C..
/
f8219..
0.01 bars
TMHDb..
/
5bfc7..
ownership of
b6a82..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFGa..
/
a9b7c..
ownership of
82611..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUTnE..
/
6cf0c..
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
62ee1..
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∃ x4 .
and
(
prim1
x4
x0
)
(
x2
x4
=
x3
)
)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
5ece9..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
62ee1..
x6
x7
x8
x9
x10
x11
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
492ff..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
∀ x3 : ο .
(
prim1
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
b6a82..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x8
x9
=
x6
x10
x11
⟶
and
(
x8
=
x10
)
(
x9
=
x11
)
)
⟶
62ee1..
x0
x1
x2
x3
x4
x5
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x3
x9
x8
)
⟶
prim1
x1
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x1
x8
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim1
(
x4
x8
x9
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x6
x8
x9
=
x6
x11
x12
)
)
)
=
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x6
x8
x1
)
(
1216a..
x7
(
λ x9 .
x6
(
prim0
(
λ x11 .
and
(
prim1
x11
x0
)
(
∃ x12 .
and
(
prim1
x12
x0
)
(
x9
=
x6
x11
x12
)
)
)
)
x1
=
x9
)
)
)
⟶
(
∀ x8 .
prim1
x8
x7
⟶
prim1
(
prim0
(
λ x9 .
and
(
prim1
x9
x0
)
(
∃ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
x9
x10
)
)
)
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x8
x9
=
x6
x13
x14
)
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x10
x11
=
x6
x15
x16
)
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
prim1
x15
x0
)
(
∃ x16 .
and
(
prim1
x16
x0
)
(
x6
x8
x9
=
x6
x15
x16
)
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
prim1
x13
x0
)
(
∃ x14 .
and
(
prim1
x14
x0
)
(
x6
x10
x11
=
x6
x13
x14
)
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x1
x8
=
x1
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x4
x8
x1
=
x1
)
⟶
62ee1..
(
1216a..
x7
(
λ x8 .
x6
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
x1
=
x8
)
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x9
=
x6
x12
x13
)
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
prim1
x12
x0
)
(
∃ x13 .
and
(
prim1
x13
x0
)
(
x8
=
x6
x12
x13
)
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
)
)
(
λ x8 x9 .
x5
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x8
=
x6
x10
x11
)
)
)
)
(
prim0
(
λ x10 .
and
(
prim1
x10
x0
)
(
∃ x11 .
and
(
prim1
x11
x0
)
(
x9
=
x6
x10
x11
)
)
)
)
)
...