Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr7pr../117f4..
PUVik../c94f8..
vout
Pr7pr../c0f40.. 19.77 bars
TMMpv../cfaac.. ownership of 33743.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTBq../929c0.. ownership of 51e5a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYxn../e709f.. ownership of 94ebe.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZe3../e6e78.. ownership of 2ad9a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFN3../1a3ae.. ownership of 228a1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMEuy../3250a.. ownership of 38b71.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUMVS../68c51.. doc published by Pr6Pc..
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param TrueTrue : ο
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Known f527a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))))
Known e6dd5.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (x8ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))))) = x6 x2 x1)
Known 313bd.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11))))
Param explicit_Complexexplicit_Complex : ι(ιι) → (ιι) → ιιι(ιιι) → (ιιι) → ο
Param SubqSubq : ιιο
Known a464a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (x8ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12)))) = x6 x2 x1))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7x0x6 x7 x1 = x7)and (and (and (and (and (x0ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7x0prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
Theorem 228a1.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7x0x6 x7 x1 = x7)and (and (and (and (and (x0ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7x0prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
...

Theorem explicit_RealsToComplexexplicit_RealsToComplex : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))
...

Known and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6
Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6
Theorem explicit_RealsToComplex_exact_Subqexplicit_RealsToComplex_exact_Subq : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))(∀ x7 . x7x0x6 x7 x1 = x7)and (and (and (and (and (and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))) (x0ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . x7x0prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))) = x4 x7 x8)
...