Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrPP6../da666..
PUSVm../e49b2..
vout
PrPP6../83b38.. 0.03 bars
TMHb1../f37a5.. ownership of 79042.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMTAD../f14bf.. ownership of 1563f.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUa5c../a5e2a.. doc published by PrGxv..
Param explicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Param 3b429.. : ι(ιι) → (ιιο) → CT2 ι
Param True : ο
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known 47430.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x7 x8 = x3 x8 x7)prim1 x1 x0(∀ x7 . prim1 x7 x0x3 x1 x7 = x7)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x4 x7 x8) x0)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 x8 = x4 x8 x7)prim1 x2 x0(x2 = x1∀ x7 : ο . x7)(∀ x7 . prim1 x7 x0x4 x2 x7 = x7)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x6 x7 x8) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x6 x7 x8 = x6 x10 x11))) = x7)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . and (prim1 x10 x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x6 x7 x8 = x6 x12 x13)))) x10)) = x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11))) = prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10)) = prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))x7 = x8)prim1 (x6 x1 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)prim1 (x6 x2 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15))))) (x3 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))) = x6 x10 x11))) = x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (x6 (x3 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13))))) (x3 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))) = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17))))) (x3 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))) = x6 x12 x13)))) x10)) = x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))) (x4 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))))) = x6 x10 x11))) = x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (x6 (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))))) = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))) (x4 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))))) = x6 x12 x13)))) x10)) = x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))))) = x6 x2 x1))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))explicit_Field (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))
Known explicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x3 x6 x7) x0)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x3 x6 x7 = x3 x7 x6)prim1 x1 x0(∀ x6 . prim1 x6 x0x3 x1 x6 = x6)(∀ x6 . prim1 x6 x0∃ x7 . and (prim1 x7 x0) (x3 x6 x7 = x1))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x4 x6 x7) x0)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x4 x6 x7 = x4 x7 x6)prim1 x2 x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . prim1 x6 x0x4 x2 x6 = x6)(∀ x6 . prim1 x6 x0(x6 = x1∀ x7 : ο . x7)∃ x7 . and (prim1 x7 x0) (x4 x6 x7 = x2))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Known explicit_Field_minus_zero : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1
Theorem 79042.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x6 x7 x8) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x6 x7 x8 = x6 x10 x12))x11)x11) = x7)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 x7 x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x6 x7 x8 = x6 x13 x15))x14)x14)) x10x11)x11) = x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . ∀ x9 : ο . (prim1 x8 x0(∃ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10))x9)x9)) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . ∀ x9 : ο . (prim1 x8 x0x7 = x6 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) x8x9)x9)) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12))x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12))x11)x11)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) x10x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)x7 = x8)prim1 (x6 x1 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)prim1 (x6 x2 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10)))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17))x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17))x16)x16))) (x3 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19)) x15x16)x16))) = x6 x10 x12))x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12))x11)x11)))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 (x3 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14))) (x3 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) x13x14)x14))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x6 (x3 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19))) (x3 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x7 = x6 x21 x23))x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x8 = x6 x21 x23))x22)x22)) x18x19)x19))) = x6 x13 x15))x14)x14)) x10x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17))x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17))x16)x16))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19)) x15x16)x16))))) (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x7 = x6 x15 x17))x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19)) x15x16)x16))) (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∃ x17 . and (prim1 x17 x0) (x8 = x6 x15 x17))x16)x16)))) = x6 x10 x12))x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12))x11)x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) x13x14)x14))))) (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) x13x14)x14))) (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14)))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x6 (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x7 = x6 x21 x23))x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x8 = x6 x21 x23))x22)x22)) x18x19)x19))))) (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x7 = x6 x18 x20))x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x8 = x6 x21 x23))x22)x22)) x18x19)x19))) (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∃ x23 . and (prim1 x23 x0) (x7 = x6 x21 x23))x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∃ x20 . and (prim1 x20 x0) (x8 = x6 x18 x20))x19)x19)))) = x6 x13 x15))x14)x14)) x10x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12))x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x8 = x6 x13 x15))x14)x14)) x10x11)x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∃ x15 . and (prim1 x15 x0) (x7 = x6 x13 x15))x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∃ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12))x11)x11))))explicit_Field x0 x1 x2 x3 x4(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13))x12)x12)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13))x12)x12)))) = x6 x2 x1))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))explicit_Field (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10)))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11))x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14))x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∃ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14))x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∃ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11))x10)x10)))))
...