Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJAV../9d217..
PUSof../fc54c..
vout
PrJAV../6c72b.. 6.43 bars
TMFaW../15ffa.. negprop ownership controlledby Pr6Pc.. upto 0
TMZoc../cecc8.. ownership of 68375.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZMM../228b2.. ownership of 7e632.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXkr../1a4e7.. ownership of e6ef8.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZHw../8f557.. ownership of 0fbe0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUM4y../c77cf.. doc published by Pr6Pc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param bijbij : ιι(ιι) → ο
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∃ x4 . and (x4x0) (x2 x4 = x3))bij x0 x1 x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param equipequip : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∃ x4 . and (x4x2) (and (equip x0 x4) (∀ x6 . x6x4∀ x7 . x7x4(x6 = x7∀ x8 : ο . x8)x3 x6 x7))) (∃ x4 . and (x4x2) (and (equip x1 x4) (∀ x6 . x6x4∀ x7 . x7x4(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7))))
Param nat_pnat_p : ιο
Param ordsuccordsucc : ιι
Known nat_5nat_5 : nat_p 5
Param ordinalordinal : ιο
Known f8b84.. : ∀ x0 . equip 3 x0(∀ x1 . x1x0ordinal x1)∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x2x3x3x4(∀ x5 . x5x0∀ x6 : ι → ο . x6 x2x6 x3x6 x4x6 x5)x1)x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Known neq_4_1neq_4_1 : 4 = 1∀ x0 : ο . x0
Known neq_4_3neq_4_3 : 4 = 3∀ x0 : ο . x0
Known neq_3_2neq_3_2 : 3 = 2∀ x0 : ο . x0
Known neq_4_2neq_4_2 : 4 = 2∀ x0 : ο . x0
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0
Known neq_3_1neq_3_1 : 3 = 1∀ x0 : ο . x0
Known neq_3_0neq_3_0 : 3 = 0∀ x0 : ο . x0
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known or5Eor5E : ∀ x0 x1 x2 x3 x4 : ο . or (or (or (or x0 x1) x2) x3) x4∀ x5 : ο . (x0x5)(x1x5)(x2x5)(x3x5)(x4x5)x5
Known or5I5or5I5 : ∀ x0 x1 x2 x3 x4 : ο . x4or (or (or (or x0 x1) x2) x3) x4
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known or5I4or5I4 : ∀ x0 x1 x2 x3 x4 : ο . x3or (or (or (or x0 x1) x2) x3) x4
Known or5I3or5I3 : ∀ x0 x1 x2 x3 x4 : ο . x2or (or (or (or x0 x1) x2) x3) x4
Known or5I2or5I2 : ∀ x0 x1 x2 x3 x4 : ο . x1or (or (or (or x0 x1) x2) x3) x4
Known or5I1or5I1 : ∀ x0 x1 x2 x3 x4 : ο . x0or (or (or (or x0 x1) x2) x3) x4
Theorem e6ef8.. : ∃ x0 : ι → ι → ο . ∀ x2 : ο . ((∀ x3 x4 . x0 x3 x4x0 x4 x3)x0 0 1x0 1 2x0 2 3x0 3 4x0 4 0not (x0 0 2)not (x0 0 3)not (x0 1 3)not (x0 1 4)not (x0 2 4)x2)x2
...

Known cases_5cases_5 : ∀ x0 . x05∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Theorem not_TwoRamseyProp_3_3_5not_TwoRamseyProp_3_3_5 : not (TwoRamseyProp 3 3 5)
...