Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrQ8b..
/
56372..
PUgzp..
/
2538c..
vout
PrQ8b..
/
44a15..
6.25 bars
TMPH9..
/
ff68a..
ownership of
2fafa..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdaf..
/
f6264..
ownership of
34ef5..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUi2D..
/
b2ad6..
doc published by
PrCx1..
Param
lam_id
lam_id
:
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Param
lam_comp
lam_comp
:
ι
→
ι
→
ι
→
ι
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
and
and
:
ο
→
ο
→
ο
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Definition
2fafa..
:=
λ x0 x1 x2 .
and
(
and
(
MagmaHom
x0
x1
x2
)
(
UnaryFuncHom
x0
x1
x2
)
)
(
UnaryPredHom
x0
x1
x2
)
Param
MetaCat_initial_p
initial_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Param
struct_b_u_p
:
ι
→
ο
Conjecture
ddb95..
:
∃ x0 .
∃ x2 :
ι → ι
.
MetaCat_initial_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
Param
MetaCat_terminal_p
terminal_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Conjecture
dc947..
:
∃ x0 .
∃ x2 :
ι → ι
.
MetaCat_terminal_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
Param
MetaCat_coproduct_constr_p
coproduct_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
8790b..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
c173e..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_coequalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
1a8ad..
:
∃ x0 x2 :
ι →
ι →
ι →
ι → ι
.
∃ x4 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
Param
MetaCat_equalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
39341..
:
∃ x0 x2 :
ι →
ι →
ι →
ι → ι
.
∃ x4 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
Param
MetaCat_pushout_buggy_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
11356..
:
∃ x0 x2 x4 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_pullback_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
e0956..
:
∃ x0 x2 x4 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_exp_constr_p
product_exponent_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
ded17..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x8 x10 :
ι →
ι → ι
.
∃ x12 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
x12
Param
MetaCat_subobject_classifier_buggy_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
57103..
:
∃ x0 .
∃ x2 :
ι → ι
.
∃ x4 x6 .
∃ x8 :
ι →
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
Param
MetaCat_nno_p
nno_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
31374..
:
∃ x0 .
∃ x2 :
ι → ι
.
∃ x4 x6 x8 .
∃ x10 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
HomSet
SetHom
:
ι
→
ι
→
ι
→
ο
Conjecture
9bd5a..
:
∃ x0 :
ι → ι
.
∃ x2 :
ι →
ι →
ι → ι
.
∃ x4 x6 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_b_u_p
2fafa..
struct_id
struct_comp
x0
x2
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x4
x6