Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . SNo x1(∀ x4 . x4SNoS_ (SNoLev x0)∀ x5 . SNo x5x2 x4 x5 = x3 x4 x5)(∀ x4 . x4SNoS_ (SNoLev x1)x2 x0 x4 = x3 x0 x4){add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)}{add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)} = {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}SNoCut (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x2 (ap x5 0) x1) (add_SNo (x2 x0 (ap x5 1)) (minus_SNo (x2 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)}) = SNoCut (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (x3 (ap x5 0) x1) (add_SNo (x3 x0 (ap x5 1)) (minus_SNo (x3 (ap x5 0) (ap x5 1))))|x5 ∈ setprod (SNoR x0) (SNoL x1)})
as obj
-
as prop
7e49d..Conj_mul_SNo_eq__25__0
theory
HotG
stx
202df..
address
TMF6i..Conj_mul_SNo_eq__25__0