Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr8UU../ee0e6..
PURRq../93bb8..
vout
Pr8UU../39005.. 0.07 bars
TMYnv../03f37.. ownership of 34a40.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMZsW../d71fb.. ownership of e65ea.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUZBg../cd628.. doc published by PrGxv..
Param and : οοο
Param explicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Param 3b429.. : ι(ιι) → (ιιο) → CT2 ι
Param True : ο
Theorem 34a40.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x3 x7 x8) x0)prim1 x1 x0(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x4 x7 x8) x0)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x7 (x4 x8 x9) = x4 (x4 x7 x8) x9)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 x8 = x4 x8 x7)prim1 x2 x0(∀ x7 . prim1 x7 x0(x7 = x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 x0) (x4 x7 x8 = x2))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x7 (x3 x8 x9) = x3 (x4 x7 x8) (x4 x7 x9))(∀ x7 . prim1 x7 x0prim1 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x0)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 (x3 x7 x8) x9 = x3 (x4 x7 x9) (x4 x8 x9))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x7 x8) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x8))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x8 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 (explicit_Field_minus x0 x1 x2 x3 x4 x8) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11))) = prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10)) = prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))x7 = x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))) (x4 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))))) = x6 x10 x11))) = x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (x6 (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))))) = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))) (x4 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))))) = x6 x12 x13)))) x10)) = x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15))))) (x3 (prim0 (λ x14 . and (prim1 x14 x0) (x7 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (prim1 x14 x0) (x8 = x6 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17)))) x14)))) = x6 x10 x11))) = x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . and (prim1 x10 x0) (x6 (x3 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13))))) (x3 (prim0 (λ x12 . and (prim1 x12 x0) (x7 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (x8 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x8 = x6 x14 x15)))) x12)))) = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (prim1 x16 x0) (∃ x17 . and (prim1 x17 x0) (x8 = x6 x16 x17))))) (x3 (prim0 (λ x16 . and (prim1 x16 x0) (x7 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (prim1 x16 x0) (x8 = x6 (prim0 (λ x18 . and (prim1 x18 x0) (∃ x19 . and (prim1 x19 x0) (x8 = x6 x18 x19)))) x16)))) = x6 x12 x13)))) x10)) = x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x3 (x3 x7 x8) (x3 x9 x10) = x3 (x3 x7 x9) (x3 x8 x10))∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11))))
...