Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr4wS../38ae0..
PUJym../b32bf..
vout
Pr4wS../062a3.. 0.03 bars
TMPJh../abe10.. ownership of e6fe7.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMXMF../8973f.. ownership of edf53.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMPKa../903d0.. ownership of 652c9.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMdE2../664e0.. ownership of 3357d.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMVvz../adbe3.. ownership of 5224b.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
TMaAZ../8c37b.. ownership of 10769.. as prop with payaddr PrGxv.. rights free controlledby PrGxv.. upto 0
PUYqt../5dc0d.. doc published by PrGxv..
Param 62ee1.. : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param 3b429.. : ι(ιι) → (ιιο) → CT2 ι
Param True : ο
Param explicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Known dde2d.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))))
Known 29eed.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))))) = x6 x2 x1)
Known 04e39.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x7 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x7 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x7 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x7 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11))))
Param 11fac.. : ι(ιι) → (ιι) → ιιι(ιιι) → (ιιι) → ο
Param Subq : ιιο
Known b1312.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x9 = x6 x11 x13))x12)x12)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13))x12)x12)))) = x6 x2 x1))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∃ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∃ x18 . and (prim1 x18 x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∃ x19 . and (prim1 x19 x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∃ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∃ x24 . and (prim1 x24 x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∃ x21 . and (prim1 x21 x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . prim1 x7 x0x6 x7 x1 = x7)and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
Theorem 5224b.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . prim1 x7 x0x6 x7 x1 = x7)and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
...

Theorem 652c9.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))
...

Known and6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6
Known and7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6
Theorem e6fe7.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))(∀ x7 . prim1 x7 x0x6 x7 x1 = x7)and (and (and (and (and (and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))) (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6))) (∀ x7 . prim1 x7 x0prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))) = x4 x7 x8)
...