∀ x0 . nat_p x0 ⟶ ∀ x1 . equip x0 x1 ⟶ ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x1 ⟶ x2 x3 ∈ x1) ⟶ (∀ x3 . x3 ∈ x1 ⟶ x2 (x2 x3) = x3) ⟶ (∃ x3 . and (x3 ∈ x1) (and (x2 x3 = x3) (∀ x5 . x5 ∈ x1 ⟶ x2 x5 = x5 ⟶ x3 = x5))) ⟶ odd_nat x0 |
|