Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrPdq..
/
116a7..
PUXrg..
/
04d42..
vout
PrPdq..
/
6493f..
6.25 bars
TMULJ..
/
140e5..
ownership of
e8ffa..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdW9..
/
ac0bb..
ownership of
e10ef..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUfj3..
/
2f0b5..
doc published by
PrCx1..
Param
lam_id
lam_id
:
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Param
lam_comp
lam_comp
:
ι
→
ι
→
ι
→
ι
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
and
and
:
ο
→
ο
→
ο
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Definition
e8ffa..
:=
λ x0 x1 x2 .
and
(
and
(
and
(
MagmaHom
x0
x1
x2
)
(
UnaryFuncHom
x0
x1
x2
)
)
(
BinRelnHom
x0
x1
x2
)
)
(
BinRelnHom
x0
x1
x2
)
Param
MetaCat_initial_p
initial_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Param
struct_b_u_r_r
:
ι
→
ο
Conjecture
b577d..
:
∃ x0 .
∃ x2 :
ι → ι
.
MetaCat_initial_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
Param
MetaCat_terminal_p
terminal_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ο
Conjecture
0c639..
:
∃ x0 .
∃ x2 :
ι → ι
.
MetaCat_terminal_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
Param
MetaCat_coproduct_constr_p
coproduct_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
c70a8..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_product_constr_p
product_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
c7c6b..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_coequalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
b186a..
:
∃ x0 x2 :
ι →
ι →
ι →
ι → ι
.
∃ x4 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_buggy_struct_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
Param
MetaCat_equalizer_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
19d7f..
:
∃ x0 x2 :
ι →
ι →
ι →
ι → ι
.
∃ x4 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_buggy_struct_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
Param
MetaCat_pushout_buggy_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
7f33f..
:
∃ x0 x2 x4 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_buggy_constr_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_pullback_buggy_struct_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
5045f..
:
∃ x0 x2 x4 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_buggy_struct_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
Param
MetaCat_exp_constr_p
product_exponent_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
36a3f..
:
∃ x0 x2 x4 :
ι →
ι → ι
.
∃ x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x8 x10 :
ι →
ι → ι
.
∃ x12 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
x12
Param
MetaCat_subobject_classifier_buggy_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
d310c..
:
∃ x0 .
∃ x2 :
ι → ι
.
∃ x4 x6 .
∃ x8 :
ι →
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_buggy_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
Param
MetaCat_nno_p
nno_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ο
Conjecture
35128..
:
∃ x0 .
∃ x2 :
ι → ι
.
∃ x4 x6 x8 .
∃ x10 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
x4
x6
x8
x10
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
HomSet
SetHom
:
ι
→
ι
→
ι
→
ο
Conjecture
58ffd..
:
∃ x0 :
ι → ι
.
∃ x2 :
ι →
ι →
ι → ι
.
∃ x4 x6 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
struct_b_u_r_r
e8ffa..
struct_id
struct_comp
x0
x2
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x4
x6