Search for blocks/addresses/...
Proofgold Proposition
wceq
cqpOLD
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
csb
(
crab
(
λ x1 .
wrex
(
λ x2 .
wss
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x2
)
)
(
λ x2 .
crn
cuz
)
)
(
λ x1 .
co
cz
(
co
cc0
(
co
(
cv
x0
)
c1
cmin
)
cfz
)
cmap
)
)
(
λ x1 .
co
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
caddc
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
cmpt
(
λ x4 .
cz
)
(
λ x4 .
csu
cz
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
cmin
)
(
cv
x3
)
)
cmul
)
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wbr
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
clt
)
)
)
)
)
)
(
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
(
cxp
cz
(
csn
cc0
)
)
)
cc0
(
co
(
cv
x0
)
(
cneg
(
csup
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
cr
(
ccnv
clt
)
)
)
cexp
)
)
)
ctng
)
)
)
type
prop
theory
SetMM
name
df_qpOLD
proof
PUcix..
Megalodon
-
proofgold address
TMdGC..
creator
36378
PrCmT..
/
a8895..
owner
36378
PrCmT..
/
a8895..
term root
c6c9d..