vout |
---|
Pr7pr../c0f40.. 19.77 barsTMMpv../cfaac.. ownership of 33743.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0TMTBq../929c0.. ownership of 51e5a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0TMYxn../e709f.. ownership of 94ebe.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0TMZe3../e6e78.. ownership of 2ad9a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0TMFN3../1a3ae.. ownership of 228a1.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0TMEuy../3250a.. ownership of 38b71.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0PUMVS../68c51.. doc published by Pr6Pc..Param explicit_Realsexplicit_Reals : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → οDefinition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param ReplSep2ReplSep2 : ι → (ι → ι) → (ι → ι → ο) → CT2 ιParam TrueTrue : οParam explicit_Field_minusexplicit_Field_minus : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ι → ιKnown f527a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))))Known e6dd5.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))))) = x6 x2 x1)Known 313bd.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11))))Param explicit_Complexexplicit_Complex : ι → (ι → ι) → (ι → ι) → ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam SubqSubq : ι → ι → οKnown a464a.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ ∀ x11 : ο . (x7 = x9 ⟶ x8 = x10 ⟶ x11) ⟶ x11) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13)) ⟶ x12) ⟶ x12))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 x2 x1)) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x13)) ⟶ x12) ⟶ x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18)) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16 ∈ x0 ⟶ (∃ x18 . and (x18 ∈ x0) (x9 = x6 x16 x18)) ⟶ x17) ⟶ x17)))) = x6 x11 x13)) ⟶ x12) ⟶ x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x8 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16)) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17 ∈ x0 ⟶ (∃ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19)) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x9 = x6 x14 x16)) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14 ∈ x0 ⟶ (∃ x16 . and (x16 ∈ x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21)) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x9 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22 ∈ x0 ⟶ (∃ x24 . and (x24 ∈ x0) (x7 = x6 x22 x24)) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19 ∈ x0 ⟶ (∃ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21)) ⟶ x20) ⟶ x20)))) = x6 x14 x16)) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)))) ⟶ and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))Theorem 228a1.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))...
Theorem explicit_RealsToComplexexplicit_RealsToComplex : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))...
Known and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5 ⟶ ∀ x6 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6) ⟶ x6Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6 ⟶ and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6Theorem explicit_RealsToComplex_exact_Subqexplicit_RealsToComplex_exact_Subq : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ x6 x7 x1 = x7) ⟶ and (and (and (and (and (and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))))) (x0 ⊆ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . x7 ∈ x0 ⟶ prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) = x4 x7 x8)...
|
|