Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x9 = x6 x11 x13))x12)x12)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (x8ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x8 = x6 x11 x13))x12)x12)))) = x6 x2 x1))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x7 = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) = x6 x14 x16))x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) = x6 x11 x13))x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x8 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x7 = x6 x16 x18))x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∃ x18 . and (x18x0) (x9 = x6 x16 x18))x17)x17)))) = x6 x11 x13))x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x8 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x8 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x8 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x8 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x7 = x6 x14 x16))x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x9 = x6 x17 x19))x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∃ x19 . and (x19x0) (x7 = x6 x17 x19))x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x9 = x6 x14 x16))x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∃ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x7 = x6 x19 x21))x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x9 = x6 x22 x24))x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∃ x24 . and (x24x0) (x7 = x6 x22 x24))x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∃ x21 . and (x21x0) (x9 = x6 x19 x21))x20)x20)))) = x6 x14 x16))x15)x15)) x11x12)x12))))and (explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . x7x0x6 x7 x1 = x7)and (and (and (and (and (x0ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (∀ x7 . x7x0prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . x7x0∀ x8 . x8x0x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
as obj
-
as prop
a464a..
theory
HotG
stx
03996..
address
TMacp..