Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))∀ x7 : ο . (explicit_Complex (ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6) (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x9 = x6 x10 x11)))))))((∀ x8 . x8x0x6 x8 x1 = x8)∀ x8 : ο . ((∀ x9 : ο . ((∀ x10 : ο . ((∀ x11 : ο . ((∀ x12 : ο . (x0ReplSep2 x0 (λ x13 . x0) (λ x13 x14 . True) x6(∀ x13 . x13x0prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x13 = x6 x15 x16))) = x13)x12)x12)x6 x1 x1 = x1x11)x11)x6 x2 x1 = x2x10)x10)(∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x10 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x10 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x10 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x11 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x11 = x6 x15 x16)))) x13)))) = x3 x10 x11)x9)x9)(∀ x9 . x9x0∀ x10 . x10x0x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x10 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x9 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (x10 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x10 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (x10 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x10 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x9 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x10 = x6 x12 x13)))))) = x4 x9 x10)x8)x8)x7)x7
as obj
-
as prop
6b23b..
theory
HotG
stx
4f316..
address
TMJrc..