Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4gX..
/
03a85..
PUTQL..
/
872f3..
vout
Pr4gX..
/
dba7e..
0.10 bars
TMNM6..
/
3f24b..
ownership of
99195..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGsZ..
/
ccf4f..
ownership of
4b18a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUTp..
/
7f68f..
ownership of
1a623..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMao3..
/
25ec1..
ownership of
421a8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbkX..
/
bb3ea..
ownership of
e3ca8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY7Z..
/
ba424..
ownership of
93c44..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbyo..
/
487c8..
ownership of
93f97..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTqM..
/
f73a7..
ownership of
34bea..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNvm..
/
55f58..
ownership of
af638..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJrN..
/
61a1c..
ownership of
dcd26..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMNQ..
/
97510..
ownership of
011cc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUp7..
/
02d7f..
ownership of
fdff7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFJk..
/
6b0d9..
ownership of
c0109..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVxM..
/
2ef9d..
ownership of
d772e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHFx..
/
17707..
ownership of
c7ddc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbtQ..
/
4025b..
ownership of
a5a3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcWs..
/
6a59d..
ownership of
21a2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHo2..
/
36331..
ownership of
8c6e4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHHz..
/
29319..
ownership of
a8a76..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY9J..
/
3a9fd..
ownership of
5c17b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFsg..
/
5efdb..
ownership of
302ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdYa..
/
8397a..
ownership of
8cdac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK5d..
/
4ce6f..
ownership of
1d933..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNJH..
/
0855f..
ownership of
d9bb1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUpf..
/
5071b..
ownership of
cacad..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGuy..
/
091f8..
ownership of
0521f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTfP..
/
bea3a..
ownership of
26a89..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdj6..
/
b6707..
ownership of
d8dfc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHVR..
/
372cd..
ownership of
10a40..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF7g..
/
e9f85..
ownership of
2b23c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWsd..
/
198dc..
ownership of
3ed03..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaq5..
/
2284e..
ownership of
901c7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbbR..
/
66728..
ownership of
2cfd7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEyJ..
/
36e5a..
ownership of
dbd6e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUby..
/
21fc4..
ownership of
48588..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXU..
/
55de0..
ownership of
0ae19..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUhRH..
/
7e136..
doc published by
PrCmT..
Known
df_ditg__df_limc__df_dv__df_dvn__df_cpn__df_mdeg__df_deg1__df_mon1__df_uc1p__df_q1p__df_r1p__df_ig1p__df_ply__df_idp__df_coe__df_dgr__df_quot__df_aa
:
∀ x0 : ο .
(
(
∀ x1 x2 x3 :
ι →
ι → ο
.
∀ x4 .
wceq
(
cdit
x1
x2
x3
)
(
cif
(
wbr
(
x1
x4
)
(
x2
x4
)
cle
)
(
citg
(
λ x5 .
co
(
x1
x5
)
(
x2
x5
)
cioo
)
x3
)
(
cneg
(
citg
(
λ x5 .
co
(
x2
x5
)
(
x1
x5
)
cioo
)
x3
)
)
)
)
⟶
wceq
climc
(
cmpt2
(
λ x1 x2 .
co
cc
cc
cpm
)
(
λ x1 x2 .
cc
)
(
λ x1 x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wcel
(
cmpt
(
λ x5 .
cun
(
cdm
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
)
(
λ x5 .
cif
(
wceq
(
cv
x5
)
(
cv
x2
)
)
(
cv
x3
)
(
cfv
(
cv
x5
)
(
cv
x1
)
)
)
)
(
cfv
(
cv
x2
)
(
co
(
co
(
cv
x4
)
(
cun
(
cdm
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
)
crest
)
(
cv
x4
)
ccnp
)
)
)
(
cfv
ccnfld
ctopn
)
)
)
)
⟶
wceq
cdv
(
cmpt2
(
λ x1 x2 .
cpw
cc
)
(
λ x1 x2 .
co
cc
(
cv
x1
)
cpm
)
(
λ x1 x2 .
ciun
(
λ x3 .
cfv
(
cdm
(
cv
x2
)
)
(
cfv
(
co
(
cfv
ccnfld
ctopn
)
(
cv
x1
)
crest
)
cnt
)
)
(
λ x3 .
cxp
(
csn
(
cv
x3
)
)
(
co
(
cmpt
(
λ x4 .
cdif
(
cdm
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
(
λ x4 .
co
(
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
cmin
)
(
co
(
cv
x4
)
(
cv
x3
)
cmin
)
cdiv
)
)
(
cv
x3
)
climc
)
)
)
)
⟶
wceq
cdvn
(
cmpt2
(
λ x1 x2 .
cpw
cc
)
(
λ x1 x2 .
co
cc
(
cv
x1
)
cpm
)
(
λ x1 x2 .
cseq
(
ccom
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x3
)
cdv
)
)
c1st
)
(
cxp
cn0
(
csn
(
cv
x2
)
)
)
cc0
)
)
⟶
wceq
ccpn
(
cmpt
(
λ x1 .
cpw
cc
)
(
λ x1 .
cmpt
(
λ x2 .
cn0
)
(
λ x2 .
crab
(
λ x3 .
wcel
(
cfv
(
cv
x2
)
(
co
(
cv
x1
)
(
cv
x3
)
cdvn
)
)
(
co
(
cdm
(
cv
x3
)
)
cc
ccncf
)
)
(
λ x3 .
co
cc
(
cv
x1
)
cpm
)
)
)
)
⟶
wceq
cmdg
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmpl
)
cbs
)
(
λ x3 .
csup
(
crn
(
cmpt
(
λ x4 .
co
(
cv
x3
)
(
cfv
(
cv
x2
)
c0g
)
csupp
)
(
λ x4 .
co
ccnfld
(
cv
x4
)
cgsu
)
)
)
cxr
clt
)
)
)
⟶
wceq
cdg1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
c1o
(
cv
x1
)
cmdg
)
)
⟶
wceq
cmn1
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
c0g
)
)
(
wceq
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdg1
)
)
(
cfv
(
cv
x2
)
cco1
)
)
(
cfv
(
cv
x1
)
cur
)
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cpl1
)
cbs
)
)
)
⟶
wceq
cuc1p
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
c0g
)
)
(
wcel
(
cfv
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cdg1
)
)
(
cfv
(
cv
x2
)
cco1
)
)
(
cfv
(
cv
x1
)
cui
)
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cpl1
)
cbs
)
)
)
⟶
wceq
cq1p
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cpl1
)
(
λ x2 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
cv
x3
)
(
λ x4 x5 .
crio
(
λ x6 .
wbr
(
cfv
(
co
(
cv
x4
)
(
co
(
cv
x6
)
(
cv
x5
)
(
cfv
(
cv
x2
)
cmulr
)
)
(
cfv
(
cv
x2
)
csg
)
)
(
cfv
(
cv
x1
)
cdg1
)
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cdg1
)
)
clt
)
(
λ x6 .
cv
x3
)
)
)
)
)
)
⟶
wceq
cr1p
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cq1p
)
)
(
cv
x4
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
cmulr
)
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
csg
)
)
)
)
)
⟶
wceq
cig1p
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cpl1
)
clidl
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
(
csn
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
c0g
)
)
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
c0g
)
(
crio
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cdg1
)
)
(
cinf
(
cima
(
cfv
(
cv
x1
)
cdg1
)
(
cdif
(
cv
x2
)
(
csn
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
c0g
)
)
)
)
cr
clt
)
)
(
λ x3 .
cin
(
cv
x2
)
(
cfv
(
cv
x1
)
cmn1
)
)
)
)
)
)
⟶
wceq
cply
(
cmpt
(
λ x1 .
cpw
cc
)
(
λ x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wrex
(
λ x4 .
wceq
(
cv
x2
)
(
cmpt
(
λ x5 .
cc
)
(
λ x5 .
csu
(
co
cc0
(
cv
x3
)
cfz
)
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x5
)
(
cv
x6
)
cexp
)
cmul
)
)
)
)
(
λ x4 .
co
(
cun
(
cv
x1
)
(
csn
cc0
)
)
cn0
cmap
)
)
(
λ x3 .
cn0
)
)
)
)
⟶
wceq
cidp
(
cres
cid
cc
)
⟶
wceq
ccoe
(
cmpt
(
λ x1 .
cfv
cc
cply
)
(
λ x1 .
crio
(
λ x2 .
wrex
(
λ x3 .
wa
(
wceq
(
cima
(
cv
x2
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
cuz
)
)
(
csn
cc0
)
)
(
wceq
(
cv
x1
)
(
cmpt
(
λ x4 .
cc
)
(
λ x4 .
csu
(
co
cc0
(
cv
x3
)
cfz
)
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x5
)
cexp
)
cmul
)
)
)
)
)
(
λ x3 .
cn0
)
)
(
λ x2 .
co
cc
cn0
cmap
)
)
)
⟶
wceq
cdgr
(
cmpt
(
λ x1 .
cfv
cc
cply
)
(
λ x1 .
csup
(
cima
(
ccnv
(
cfv
(
cv
x1
)
ccoe
)
)
(
cdif
cc
(
csn
cc0
)
)
)
cn0
clt
)
)
⟶
wceq
cquot
(
cmpt2
(
λ x1 x2 .
cfv
cc
cply
)
(
λ x1 x2 .
cdif
(
cfv
cc
cply
)
(
csn
c0p
)
)
(
λ x1 x2 .
crio
(
λ x3 .
wsbc
(
λ x4 .
wo
(
wceq
(
cv
x4
)
c0p
)
(
wbr
(
cfv
(
cv
x4
)
cdgr
)
(
cfv
(
cv
x2
)
cdgr
)
clt
)
)
(
co
(
cv
x1
)
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
cmul
)
)
(
cof
cmin
)
)
)
(
λ x3 .
cfv
cc
cply
)
)
)
⟶
wceq
caa
(
ciun
(
λ x1 .
cdif
(
cfv
cz
cply
)
(
csn
c0p
)
)
(
λ x1 .
cima
(
ccnv
(
cv
x1
)
)
(
csn
cc0
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_ditg
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 .
wceq
(
cdit
x0
x1
x2
)
(
cif
(
wbr
(
x0
x3
)
(
x1
x3
)
cle
)
(
citg
(
λ x4 .
co
(
x0
x4
)
(
x1
x4
)
cioo
)
x2
)
(
cneg
(
citg
(
λ x4 .
co
(
x1
x4
)
(
x0
x4
)
cioo
)
x2
)
)
)
...
Theorem
df_limc
:
wceq
climc
(
cmpt2
(
λ x0 x1 .
co
cc
cc
cpm
)
(
λ x0 x1 .
cc
)
(
λ x0 x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wcel
(
cmpt
(
λ x4 .
cun
(
cdm
(
cv
x0
)
)
(
csn
(
cv
x1
)
)
)
(
λ x4 .
cif
(
wceq
(
cv
x4
)
(
cv
x1
)
)
(
cv
x2
)
(
cfv
(
cv
x4
)
(
cv
x0
)
)
)
)
(
cfv
(
cv
x1
)
(
co
(
co
(
cv
x3
)
(
cun
(
cdm
(
cv
x0
)
)
(
csn
(
cv
x1
)
)
)
crest
)
(
cv
x3
)
ccnp
)
)
)
(
cfv
ccnfld
ctopn
)
)
)
)
...
Theorem
df_dv
:
wceq
cdv
(
cmpt2
(
λ x0 x1 .
cpw
cc
)
(
λ x0 x1 .
co
cc
(
cv
x0
)
cpm
)
(
λ x0 x1 .
ciun
(
λ x2 .
cfv
(
cdm
(
cv
x1
)
)
(
cfv
(
co
(
cfv
ccnfld
ctopn
)
(
cv
x0
)
crest
)
cnt
)
)
(
λ x2 .
cxp
(
csn
(
cv
x2
)
)
(
co
(
cmpt
(
λ x3 .
cdif
(
cdm
(
cv
x1
)
)
(
csn
(
cv
x2
)
)
)
(
λ x3 .
co
(
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
cmin
)
(
co
(
cv
x3
)
(
cv
x2
)
cmin
)
cdiv
)
)
(
cv
x2
)
climc
)
)
)
)
...
Theorem
df_dvn
:
wceq
cdvn
(
cmpt2
(
λ x0 x1 .
cpw
cc
)
(
λ x0 x1 .
co
cc
(
cv
x0
)
cpm
)
(
λ x0 x1 .
cseq
(
ccom
(
cmpt
(
λ x2 .
cvv
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x2
)
cdv
)
)
c1st
)
(
cxp
cn0
(
csn
(
cv
x1
)
)
)
cc0
)
)
...
Theorem
df_cpn
:
wceq
ccpn
(
cmpt
(
λ x0 .
cpw
cc
)
(
λ x0 .
cmpt
(
λ x1 .
cn0
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
cfv
(
cv
x1
)
(
co
(
cv
x0
)
(
cv
x2
)
cdvn
)
)
(
co
(
cdm
(
cv
x2
)
)
cc
ccncf
)
)
(
λ x2 .
co
cc
(
cv
x0
)
cpm
)
)
)
)
...
Theorem
df_mdeg
:
wceq
cmdg
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmpl
)
cbs
)
(
λ x2 .
csup
(
crn
(
cmpt
(
λ x3 .
co
(
cv
x2
)
(
cfv
(
cv
x1
)
c0g
)
csupp
)
(
λ x3 .
co
ccnfld
(
cv
x3
)
cgsu
)
)
)
cxr
clt
)
)
)
...
Theorem
df_deg1
:
wceq
cdg1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
c1o
(
cv
x0
)
cmdg
)
)
...
Theorem
df_mon1
:
wceq
cmn1
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
c0g
)
)
(
wceq
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdg1
)
)
(
cfv
(
cv
x1
)
cco1
)
)
(
cfv
(
cv
x0
)
cur
)
)
)
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cpl1
)
cbs
)
)
)
...
Theorem
df_uc1p
:
wceq
cuc1p
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
c0g
)
)
(
wcel
(
cfv
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cdg1
)
)
(
cfv
(
cv
x1
)
cco1
)
)
(
cfv
(
cv
x0
)
cui
)
)
)
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cpl1
)
cbs
)
)
)
...
Theorem
df_q1p
:
wceq
cq1p
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cpl1
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
crio
(
λ x5 .
wbr
(
cfv
(
co
(
cv
x3
)
(
co
(
cv
x5
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
csg
)
)
(
cfv
(
cv
x0
)
cdg1
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cdg1
)
)
clt
)
(
λ x5 .
cv
x2
)
)
)
)
)
)
...
Theorem
df_r1p
:
wceq
cr1p
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
cbs
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x2
)
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cq1p
)
)
(
cv
x3
)
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
cmulr
)
)
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
csg
)
)
)
)
)
...
Theorem
df_ig1p
:
wceq
cig1p
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cfv
(
cv
x0
)
cpl1
)
clidl
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
(
csn
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
c0g
)
)
)
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
c0g
)
(
crio
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cdg1
)
)
(
cinf
(
cima
(
cfv
(
cv
x0
)
cdg1
)
(
cdif
(
cv
x1
)
(
csn
(
cfv
(
cfv
(
cv
x0
)
cpl1
)
c0g
)
)
)
)
cr
clt
)
)
(
λ x2 .
cin
(
cv
x1
)
(
cfv
(
cv
x0
)
cmn1
)
)
)
)
)
)
...
Theorem
df_ply
:
wceq
cply
(
cmpt
(
λ x0 .
cpw
cc
)
(
λ x0 .
cab
(
λ x1 .
wrex
(
λ x2 .
wrex
(
λ x3 .
wceq
(
cv
x1
)
(
cmpt
(
λ x4 .
cc
)
(
λ x4 .
csu
(
co
cc0
(
cv
x2
)
cfz
)
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x4
)
(
cv
x5
)
cexp
)
cmul
)
)
)
)
(
λ x3 .
co
(
cun
(
cv
x0
)
(
csn
cc0
)
)
cn0
cmap
)
)
(
λ x2 .
cn0
)
)
)
)
...
Theorem
df_idp
:
wceq
cidp
(
cres
cid
cc
)
...
Theorem
df_coe
:
wceq
ccoe
(
cmpt
(
λ x0 .
cfv
cc
cply
)
(
λ x0 .
crio
(
λ x1 .
wrex
(
λ x2 .
wa
(
wceq
(
cima
(
cv
x1
)
(
cfv
(
co
(
cv
x2
)
c1
caddc
)
cuz
)
)
(
csn
cc0
)
)
(
wceq
(
cv
x0
)
(
cmpt
(
λ x3 .
cc
)
(
λ x3 .
csu
(
co
cc0
(
cv
x2
)
cfz
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x4
)
cexp
)
cmul
)
)
)
)
)
(
λ x2 .
cn0
)
)
(
λ x1 .
co
cc
cn0
cmap
)
)
)
...
Theorem
df_dgr
:
wceq
cdgr
(
cmpt
(
λ x0 .
cfv
cc
cply
)
(
λ x0 .
csup
(
cima
(
ccnv
(
cfv
(
cv
x0
)
ccoe
)
)
(
cdif
cc
(
csn
cc0
)
)
)
cn0
clt
)
)
...
Theorem
df_quot
:
wceq
cquot
(
cmpt2
(
λ x0 x1 .
cfv
cc
cply
)
(
λ x0 x1 .
cdif
(
cfv
cc
cply
)
(
csn
c0p
)
)
(
λ x0 x1 .
crio
(
λ x2 .
wsbc
(
λ x3 .
wo
(
wceq
(
cv
x3
)
c0p
)
(
wbr
(
cfv
(
cv
x3
)
cdgr
)
(
cfv
(
cv
x1
)
cdgr
)
clt
)
)
(
co
(
cv
x0
)
(
co
(
cv
x1
)
(
cv
x2
)
(
cof
cmul
)
)
(
cof
cmin
)
)
)
(
λ x2 .
cfv
cc
cply
)
)
)
...
Theorem
df_aa
:
wceq
caa
(
ciun
(
λ x0 .
cdif
(
cfv
cz
cply
)
(
csn
c0p
)
)
(
λ x0 .
cima
(
ccnv
(
cv
x0
)
)
(
csn
cc0
)
)
)
...