Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrACc..
/
8469f..
PUMLF..
/
d97bb..
vout
PrACc..
/
a515c..
24.99 bars
TMcex..
/
7c054..
ownership of
412a4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdyP..
/
325f3..
ownership of
cc86b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGLT..
/
4145d..
ownership of
80c9a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMGg..
/
17000..
ownership of
18c9f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQUe..
/
47801..
ownership of
58996..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdFe..
/
21104..
ownership of
04d24..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXXR..
/
058f9..
ownership of
4b3b3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRrN..
/
cb8f8..
ownership of
d741d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW7W..
/
719c9..
ownership of
47b65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW7e..
/
9ec19..
ownership of
76562..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTi6..
/
74b48..
ownership of
fa143..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQXa..
/
f915b..
ownership of
a4c85..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb8F..
/
3c16a..
ownership of
d0866..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYBP..
/
add2b..
ownership of
7fad9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLbf..
/
81a51..
ownership of
602b2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc73..
/
d34a9..
ownership of
e79ad..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS6M..
/
43b42..
ownership of
d0dab..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVoc..
/
e7a58..
ownership of
3450c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM47..
/
e37a5..
ownership of
731eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJbN..
/
99946..
ownership of
bcb48..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGgs..
/
cfb3b..
ownership of
f01cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSKY..
/
35c74..
ownership of
5ef50..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQXZ..
/
152a0..
ownership of
7c85f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRJa..
/
0f652..
ownership of
32867..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcYZ..
/
0d813..
ownership of
99c8d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaLT..
/
bc385..
ownership of
02e17..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTGP..
/
76a35..
ownership of
84ac3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTaP..
/
8907e..
ownership of
435a4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGWp..
/
2cceb..
ownership of
baca8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML8g..
/
3253d..
ownership of
cb50f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMpD..
/
89713..
ownership of
4f786..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbJa..
/
cd049..
ownership of
71d30..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXNn..
/
18846..
ownership of
72488..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ3J..
/
3621b..
ownership of
92338..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUzf..
/
12d8d..
ownership of
49b7a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVqt..
/
f125b..
ownership of
ba16e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZKU..
/
c83e9..
ownership of
b3cc9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLwv..
/
78580..
ownership of
c698c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMQq..
/
7a2ae..
ownership of
89be7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEgx..
/
cff02..
ownership of
b1f0b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYrp..
/
9d3bc..
ownership of
94800..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNhp..
/
c8ff3..
ownership of
ff0bd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVBX..
/
7651f..
ownership of
c0731..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbPo..
/
63571..
ownership of
dd8c1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN9w..
/
1ad6e..
ownership of
a6520..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMyR..
/
1e3ed..
ownership of
208c7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUfo..
/
2af90..
ownership of
ec219..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb5Z..
/
fbb41..
ownership of
488e1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWny..
/
dd38f..
ownership of
a6655..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXuJ..
/
f7887..
ownership of
e124b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdUy..
/
672ba..
ownership of
df5e5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKFb..
/
a7a28..
ownership of
b6ec9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVye..
/
6333e..
ownership of
92724..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPJq..
/
d165e..
ownership of
60f99..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdAL..
/
ae8a3..
ownership of
c4cce..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRVY..
/
9ce19..
ownership of
e5265..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVdr..
/
d26a2..
ownership of
ce3f7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMddE..
/
74540..
ownership of
79fee..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUpU..
/
1d9a5..
ownership of
b959d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPRd..
/
45561..
ownership of
82619..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXva..
/
0b1a7..
ownership of
bdf8d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFyH..
/
5fa26..
ownership of
ed542..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMczK..
/
8eda5..
ownership of
efbef..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVWK..
/
cf177..
ownership of
ce4ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVvu..
/
25619..
ownership of
5c288..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTxp..
/
bc970..
ownership of
5550e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS9A..
/
1cb9e..
ownership of
073a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNH3..
/
51ef4..
ownership of
d4867..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU5i..
/
c583e..
ownership of
460aa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTRY..
/
616f0..
ownership of
b9d59..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLru..
/
f6adb..
ownership of
4ebad..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSGG..
/
b9182..
ownership of
c0059..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT5V..
/
5c3a8..
ownership of
b86d4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcCg..
/
fe662..
ownership of
b15a8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFzB..
/
df4ad..
ownership of
df733..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUKp..
/
4a2a7..
ownership of
29a1c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMnh..
/
ff656..
ownership of
b8a67..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHo6..
/
e6252..
ownership of
b0082..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa3V..
/
ac88e..
ownership of
fa785..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSwU..
/
f0edd..
ownership of
8fb86..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNEC..
/
feab9..
ownership of
fbf9e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFvT..
/
6c142..
ownership of
3c2bd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSUp..
/
fbf7e..
ownership of
29d2f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKSp..
/
fee64..
ownership of
16566..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVRr..
/
bc3d6..
ownership of
fcbe6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRmU..
/
d5be3..
ownership of
a1067..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ5F..
/
74b72..
ownership of
5f45e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYtv..
/
6a49e..
ownership of
408b5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXym..
/
0b31d..
ownership of
84faa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT6a..
/
ddb4b..
ownership of
977b2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGor..
/
6ddb2..
ownership of
4a764..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXah..
/
b3493..
ownership of
3c8aa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYEL..
/
47126..
ownership of
2eefa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbCP..
/
cf169..
ownership of
b8476..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb9M..
/
74763..
ownership of
a28b4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJJA..
/
9436c..
ownership of
cfc91..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNgA..
/
9958a..
ownership of
57777..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdvk..
/
c15ae..
ownership of
bec1f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYZC..
/
f460a..
ownership of
578ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWMr..
/
8ad50..
ownership of
34778..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGCP..
/
f4e2f..
ownership of
32458..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR8f..
/
6f79d..
ownership of
9abb6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMtM..
/
37876..
ownership of
0d0bd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWdw..
/
617b6..
ownership of
2a0ee..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVko..
/
81a13..
ownership of
4d424..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKSA..
/
7a033..
ownership of
ccdc6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcjX..
/
af37a..
ownership of
304d6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHFq..
/
b54e5..
ownership of
667e9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcRt..
/
60e15..
ownership of
749af..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQfj..
/
af7f4..
ownership of
1930c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLQu..
/
d917d..
ownership of
0f03b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbx8..
/
40002..
ownership of
713e5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdDs..
/
b4f21..
ownership of
83200..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLuc..
/
22b46..
ownership of
f648a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTgh..
/
d7623..
ownership of
11625..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTWN..
/
dc5c7..
ownership of
f15b3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWhV..
/
6f875..
ownership of
b042b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVH9..
/
2324c..
ownership of
26287..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHHZ..
/
e54cf..
ownership of
984ea..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQuF..
/
71e5c..
ownership of
63ad6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXJu..
/
638db..
ownership of
b2a3b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbFf..
/
95b82..
ownership of
fb7f9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPWX..
/
dc5c9..
ownership of
aeb79..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVmT..
/
c40b7..
ownership of
43d8a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGCf..
/
2f7dc..
ownership of
e0851..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYd3..
/
b2f62..
ownership of
a0e09..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbHj..
/
d806b..
ownership of
66c72..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMacf..
/
c4c78..
ownership of
a3992..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcCM..
/
a84c7..
ownership of
0fe5a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJNb..
/
87298..
ownership of
e23b1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWMY..
/
69132..
ownership of
a34bf..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJZe..
/
aa531..
ownership of
405ba..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLDW..
/
99a86..
ownership of
79551..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMac3..
/
c0c93..
ownership of
380fa..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUZgx..
/
a179b..
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
79551..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
0fc90..
x0
x4
)
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
749af..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
79551..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
...
Theorem
304d6..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
x0
=
f482f..
(
79551..
x0
x1
x2
x3
x4
)
4a7ef..
...
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
4d424..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
79551..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
...
Theorem
0d0bd..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
79551..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
...
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
32458..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
79551..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
...
Theorem
578ea..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
79551..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
...
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
57777..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
79551..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
...
Theorem
a28b4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
79551..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
...
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
2eefa..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
79551..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
...
Theorem
4a764..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
f482f..
(
f482f..
(
79551..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
...
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
84faa..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 :
ι → ι
.
79551..
x0
x2
x4
x6
x8
=
79551..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
...
Param
iff
:
ο
→
ο
→
ο
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
5f45e..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 x8 :
ι → ι
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x7
x9
=
x8
x9
)
⟶
79551..
x0
x1
x3
x5
x7
=
79551..
x0
x2
x4
x6
x8
...
Definition
a34bf..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x2
⟶
prim1
(
x6
x7
)
x2
)
⟶
x1
(
79551..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
fcbe6..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x4
x5
)
x0
)
⟶
a34bf..
(
79551..
x0
x1
x2
x3
x4
)
...
Theorem
29d2f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
a34bf..
(
79551..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
...
Theorem
fbf9e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
a34bf..
(
79551..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
...
Theorem
fa785..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
a34bf..
(
79551..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x4
x5
)
x0
...
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
b8a67..
:
∀ x0 .
a34bf..
x0
⟶
x0
=
79551..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
...
Definition
0fe5a..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
df733..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
prim1
x10
x1
⟶
x5
x10
=
x9
x10
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
0fe5a..
(
79551..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...
Definition
66c72..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
b86d4..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
prim1
x10
x1
⟶
x5
x10
=
x9
x10
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
66c72..
(
79551..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
e0851..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι → ι
.
λ x4 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
d2155..
x0
x4
)
)
)
)
)
Theorem
4ebad..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
e0851..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
...
Theorem
460aa..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x5
x0
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
4a7ef..
)
⟶
x5
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
4a7ef..
)
x0
...
Theorem
073a0..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
e0851..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
...
Theorem
5c288..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
...
Theorem
efbef..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
e0851..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
...
Theorem
bdf8d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
...
Theorem
b959d..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
e0851..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
...
Theorem
ce3f7..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
...
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
c4cce..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
e0851..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x5
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
x7
...
Theorem
92724..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
2b2e3..
(
f482f..
(
e0851..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
...
Theorem
df5e5..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
∀ x8 x9 :
ι →
ι → ο
.
e0851..
x0
x2
x4
x6
x8
=
e0851..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
x10
x11
=
x9
x10
x11
)
...
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
a6655..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ι
.
∀ x7 x8 :
ι →
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x7
x9
x10
)
(
x8
x9
x10
)
)
⟶
e0851..
x0
x1
x3
x5
x7
=
e0851..
x0
x2
x4
x6
x8
...
Definition
aeb79..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι →
ι → ο
.
x1
(
e0851..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
ec219..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι →
ι → ο
.
aeb79..
(
e0851..
x0
x1
x2
x3
x4
)
...
Theorem
a6520..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
aeb79..
(
e0851..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
...
Theorem
c0731..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
aeb79..
(
e0851..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
...
Theorem
94800..
:
∀ x0 .
aeb79..
x0
⟶
x0
=
e0851..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
...
Definition
b2a3b..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
89be7..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
b2a3b..
(
e0851..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...
Definition
984ea..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
b3cc9..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
984ea..
(
e0851..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
b042b..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι → ι
.
λ x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
49b7a..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
b042b..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
...
Theorem
72488..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
f482f..
(
b042b..
x0
x1
x2
x3
x4
)
4a7ef..
...
Theorem
4f786..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
b042b..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
...
Theorem
baca8..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
b042b..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
...
Theorem
84ac3..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
b042b..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
...
Theorem
99c8d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
b042b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
...
Theorem
7c85f..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
b042b..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
...
Theorem
f01cb..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
b042b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
...
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
731eb..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
b042b..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
...
Theorem
d0dab..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
b042b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
...
Theorem
602b2..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
∀ x8 x9 :
ι → ο
.
b042b..
x0
x2
x4
x6
x8
=
b042b..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
...
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
d0866..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ι
.
∀ x7 x8 :
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
b042b..
x0
x1
x3
x5
x7
=
b042b..
x0
x2
x4
x6
x8
...
Definition
11625..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι → ο
.
x1
(
b042b..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
fa143..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι → ο
.
11625..
(
b042b..
x0
x1
x2
x3
x4
)
...
Theorem
47b65..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
11625..
(
b042b..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
...
Theorem
4b3b3..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
11625..
(
b042b..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
...
Theorem
58996..
:
∀ x0 .
11625..
x0
⟶
x0
=
b042b..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
...
Definition
83200..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
80c9a..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
83200..
(
b042b..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...
Definition
0f03b..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
412a4..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
0f03b..
(
b042b..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
...