Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr9qV..
/
133b5..
PUPXg..
/
321b8..
vout
Pr9qV..
/
b28eb..
0.10 bars
TMW5L..
/
8c035..
ownership of
13d5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKai..
/
c0479..
ownership of
0bcd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ4K..
/
d650f..
ownership of
ecb67..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRZs..
/
de19d..
ownership of
46e7a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdNd..
/
614c7..
ownership of
405c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb1R..
/
cfd32..
ownership of
9fd11..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLMP..
/
fb087..
ownership of
fb37a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFxd..
/
984bd..
ownership of
2cfc8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPZJ..
/
1168f..
ownership of
0a9c0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUgi..
/
1f97a..
ownership of
b54f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEp8..
/
99a84..
ownership of
9fa3b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbCj..
/
96c4c..
ownership of
b3323..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUGe..
/
a93d5..
ownership of
1fc5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLPG..
/
ff575..
ownership of
c0903..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSjx..
/
a231a..
ownership of
6bc52..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFCC..
/
e1913..
ownership of
2b8f1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQJv..
/
9a030..
ownership of
78953..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGTa..
/
7fc5f..
ownership of
3f003..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXsc..
/
7b208..
ownership of
8a37d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLkK..
/
8dfe0..
ownership of
3b038..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVTo..
/
b0e21..
ownership of
2f6b7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHmW..
/
6a5c1..
ownership of
70ccc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdGC..
/
a8895..
ownership of
92715..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKVZ..
/
ba836..
ownership of
c6c9d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKLM..
/
a530b..
ownership of
20557..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK7A..
/
de986..
ownership of
ff1c1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP3t..
/
0ab44..
ownership of
c8f2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVgz..
/
2a0ab..
ownership of
9ce57..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbkU..
/
1e5ec..
ownership of
186f9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSov..
/
cb946..
ownership of
ecc2e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN83..
/
2c706..
ownership of
7331f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJaL..
/
dd0e9..
ownership of
00439..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaom..
/
ed2f7..
ownership of
e06de..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXtj..
/
1ecc0..
ownership of
fda3f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbNM..
/
75856..
ownership of
a84e4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdRP..
/
5ef74..
ownership of
bfc4b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUcix..
/
ff9d2..
doc published by
PrCmT..
Known
df_zrng__df_gf__df_gfoo__df_eqp__df_rqp__df_qp__df_qpOLD__df_zp__df_qpa__df_cp__df_trpred__df_wsuc__df_wlim__df_frecs__df_no__df_slt__df_bday__df_sle
:
∀ x0 : ο .
(
wceq
czr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
(
crn
(
cfv
(
cv
x1
)
czrh
)
)
citr
)
)
⟶
wceq
cgf
(
cmpt2
(
λ x1 x2 .
cprime
)
(
λ x1 x2 .
cn
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
czn
)
(
λ x3 .
cfv
(
co
(
cv
x3
)
(
csn
(
csb
(
cfv
(
cv
x3
)
cpl1
)
(
λ x4 .
csb
(
cfv
(
cv
x3
)
cv1
)
(
λ x5 .
co
(
co
(
co
(
cv
x1
)
(
cv
x2
)
cexp
)
(
cv
x5
)
(
cfv
(
cfv
(
cv
x4
)
cmgp
)
cmg
)
)
(
cv
x5
)
(
cfv
(
cv
x4
)
csg
)
)
)
)
)
csf
)
c1st
)
)
)
⟶
wceq
cgfo
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
czn
)
(
λ x2 .
co
(
cv
x2
)
(
cmpt
(
λ x3 .
cn
)
(
λ x3 .
csn
(
csb
(
cfv
(
cv
x2
)
cpl1
)
(
λ x4 .
csb
(
cfv
(
cv
x2
)
cv1
)
(
λ x5 .
co
(
co
(
co
(
cv
x1
)
(
cv
x3
)
cexp
)
(
cv
x5
)
(
cfv
(
cfv
(
cv
x4
)
cmgp
)
cmg
)
)
(
cv
x5
)
(
cfv
(
cv
x4
)
csg
)
)
)
)
)
)
cpsl
)
)
)
⟶
wceq
ceqp
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
co
cz
cz
cmap
)
)
(
wral
(
λ x4 .
wcel
(
csu
(
cfv
(
cneg
(
cv
x4
)
)
cuz
)
(
λ x5 .
co
(
co
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x2
)
)
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x3
)
)
cmin
)
(
co
(
cv
x1
)
(
co
(
cv
x5
)
(
co
(
cv
x4
)
c1
caddc
)
caddc
)
cexp
)
cdiv
)
)
cz
)
(
λ x4 .
cz
)
)
)
)
)
⟶
wceq
crqp
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
cin
ceqp
(
csb
(
crab
(
λ x2 .
wrex
(
λ x3 .
wss
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x3
)
)
(
λ x3 .
crn
cuz
)
)
(
λ x2 .
co
cz
cz
cmap
)
)
(
λ x2 .
cxp
(
cv
x2
)
(
cin
(
cv
x2
)
(
co
cz
(
co
cc0
(
co
(
cv
x1
)
c1
cmin
)
cfz
)
cmap
)
)
)
)
)
)
⟶
wceq
cqp
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wrex
(
λ x3 .
wss
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x3
)
)
(
λ x3 .
crn
cuz
)
)
(
λ x2 .
co
cz
(
co
cc0
(
co
(
cv
x1
)
c1
cmin
)
cfz
)
cmap
)
)
(
λ x2 .
co
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cof
caddc
)
)
(
cfv
(
cv
x1
)
crqp
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cfv
(
cmpt
(
λ x5 .
cz
)
(
λ x5 .
csu
cz
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
cmin
)
(
cv
x4
)
)
cmul
)
)
)
(
cfv
(
cv
x1
)
crqp
)
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x3 x4 .
wa
(
wss
(
cpr
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
(
wbr
(
csu
cz
(
λ x5 .
co
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x1
)
c1
caddc
)
(
cneg
(
cv
x5
)
)
cexp
)
cmul
)
)
(
csu
cz
(
λ x5 .
co
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x1
)
c1
caddc
)
(
cneg
(
cv
x5
)
)
cexp
)
cmul
)
)
clt
)
)
)
)
)
)
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
(
cxp
cz
(
csn
cc0
)
)
)
cc0
(
co
(
cv
x1
)
(
cneg
(
cinf
(
cima
(
ccnv
(
cv
x3
)
)
(
cdif
cz
(
csn
cc0
)
)
)
cr
clt
)
)
cexp
)
)
)
ctng
)
)
)
⟶
wceq
cqpOLD
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
csb
(
crab
(
λ x2 .
wrex
(
λ x3 .
wss
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x3
)
)
(
λ x3 .
crn
cuz
)
)
(
λ x2 .
co
cz
(
co
cc0
(
co
(
cv
x1
)
c1
cmin
)
cfz
)
cmap
)
)
(
λ x2 .
co
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cof
caddc
)
)
(
cfv
(
cv
x1
)
crqp
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cfv
(
cmpt
(
λ x5 .
cz
)
(
λ x5 .
csu
cz
(
λ x6 .
co
(
cfv
(
cv
x6
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
cmin
)
(
cv
x4
)
)
cmul
)
)
)
(
cfv
(
cv
x1
)
crqp
)
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x3 x4 .
wa
(
wss
(
cpr
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
(
wbr
(
csu
cz
(
λ x5 .
co
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x1
)
c1
caddc
)
(
cneg
(
cv
x5
)
)
cexp
)
cmul
)
)
(
csu
cz
(
λ x5 .
co
(
cfv
(
cneg
(
cv
x5
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x1
)
c1
caddc
)
(
cneg
(
cv
x5
)
)
cexp
)
cmul
)
)
clt
)
)
)
)
)
)
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
cif
(
wceq
(
cv
x3
)
(
cxp
cz
(
csn
cc0
)
)
)
cc0
(
co
(
cv
x1
)
(
cneg
(
csup
(
cima
(
ccnv
(
cv
x3
)
)
(
cdif
cz
(
csn
cc0
)
)
)
cr
(
ccnv
clt
)
)
)
cexp
)
)
)
ctng
)
)
)
⟶
wceq
czp
(
ccom
czr
cqp
)
⟶
wceq
cqpa
(
cmpt
(
λ x1 .
cprime
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cqp
)
(
λ x2 .
co
(
cv
x2
)
(
cmpt
(
λ x3 .
cn
)
(
λ x3 .
crab
(
λ x4 .
wa
(
wbr
(
co
(
cv
x2
)
(
cv
x4
)
cdg1
)
(
cv
x3
)
cle
)
(
wral
(
λ x5 .
wss
(
cima
(
ccnv
(
cv
x5
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
co
cc0
(
cv
x3
)
cfz
)
)
(
λ x5 .
crn
(
cfv
(
cv
x4
)
cco1
)
)
)
)
(
λ x4 .
cfv
(
cv
x2
)
cpl1
)
)
)
cpsl
)
)
)
⟶
wceq
ccp
(
ccom
ccpms
cqpa
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
ctrpred
x1
x2
x3
)
(
cuni
(
crn
(
cres
(
crdg
(
cmpt
(
λ x4 .
cvv
)
(
λ x4 .
ciun
(
λ x5 .
cv
x4
)
(
λ x5 .
cpred
x1
x2
(
cv
x5
)
)
)
)
(
cpred
x1
x2
x3
)
)
com
)
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cwsuc
x1
x2
x3
)
(
cinf
(
cpred
x1
(
ccnv
x2
)
x3
)
x1
x2
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cwlim
x1
x2
)
(
crab
(
λ x3 .
wa
(
wne
(
cv
x3
)
(
cinf
x1
x1
x2
)
)
(
wceq
(
cv
x3
)
(
csup
(
cpred
x1
x2
(
cv
x3
)
)
x1
x2
)
)
)
(
λ x3 .
x1
)
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cfrecs
x1
x2
x3
)
(
cuni
(
cab
(
λ x4 .
wex
(
λ x5 .
w3a
(
wfn
(
cv
x4
)
(
cv
x5
)
)
(
wa
(
wss
(
cv
x5
)
x1
)
(
wral
(
λ x6 .
wss
(
cpred
x1
x2
(
cv
x6
)
)
(
cv
x5
)
)
(
λ x6 .
cv
x5
)
)
)
(
wral
(
λ x6 .
wceq
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
cres
(
cv
x4
)
(
cpred
x1
x2
(
cv
x6
)
)
)
x3
)
)
(
λ x6 .
cv
x5
)
)
)
)
)
)
)
⟶
wceq
csur
(
cab
(
λ x1 .
wrex
(
λ x2 .
wf
(
cv
x2
)
(
cpr
c1o
c2o
)
(
cv
x1
)
)
(
λ x2 .
con0
)
)
)
⟶
wceq
cslt
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
csur
)
(
wcel
(
cv
x2
)
csur
)
)
(
wrex
(
λ x3 .
wa
(
wral
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
(
cv
x1
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
cv
x3
)
)
(
wbr
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
ctp
(
cop
c1o
c0
)
(
cop
c1o
c2o
)
(
cop
c0
c2o
)
)
)
)
(
λ x3 .
con0
)
)
)
)
⟶
wceq
cbday
(
cmpt
(
λ x1 .
csur
)
(
λ x1 .
cdm
(
cv
x1
)
)
)
⟶
wceq
csle
(
cdif
(
cxp
csur
csur
)
(
ccnv
cslt
)
)
⟶
x0
)
⟶
x0
Theorem
df_zrng
:
wceq
czr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
(
crn
(
cfv
(
cv
x0
)
czrh
)
)
citr
)
)
...
Theorem
df_gf
:
wceq
cgf
(
cmpt2
(
λ x0 x1 .
cprime
)
(
λ x0 x1 .
cn
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
czn
)
(
λ x2 .
cfv
(
co
(
cv
x2
)
(
csn
(
csb
(
cfv
(
cv
x2
)
cpl1
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
cv1
)
(
λ x4 .
co
(
co
(
co
(
cv
x0
)
(
cv
x1
)
cexp
)
(
cv
x4
)
(
cfv
(
cfv
(
cv
x3
)
cmgp
)
cmg
)
)
(
cv
x4
)
(
cfv
(
cv
x3
)
csg
)
)
)
)
)
csf
)
c1st
)
)
)
...
Theorem
df_gfoo
:
wceq
cgfo
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
czn
)
(
λ x1 .
co
(
cv
x1
)
(
cmpt
(
λ x2 .
cn
)
(
λ x2 .
csn
(
csb
(
cfv
(
cv
x1
)
cpl1
)
(
λ x3 .
csb
(
cfv
(
cv
x1
)
cv1
)
(
λ x4 .
co
(
co
(
co
(
cv
x0
)
(
cv
x2
)
cexp
)
(
cv
x4
)
(
cfv
(
cfv
(
cv
x3
)
cmgp
)
cmg
)
)
(
cv
x4
)
(
cfv
(
cv
x3
)
csg
)
)
)
)
)
)
cpsl
)
)
)
...
Theorem
df_eqp
:
wceq
ceqp
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wss
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
co
cz
cz
cmap
)
)
(
wral
(
λ x3 .
wcel
(
csu
(
cfv
(
cneg
(
cv
x3
)
)
cuz
)
(
λ x4 .
co
(
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x1
)
)
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x2
)
)
cmin
)
(
co
(
cv
x0
)
(
co
(
cv
x4
)
(
co
(
cv
x3
)
c1
caddc
)
caddc
)
cexp
)
cdiv
)
)
cz
)
(
λ x3 .
cz
)
)
)
)
)
...
Theorem
df_rqp
:
wceq
crqp
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
cin
ceqp
(
csb
(
crab
(
λ x1 .
wrex
(
λ x2 .
wss
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x2
)
)
(
λ x2 .
crn
cuz
)
)
(
λ x1 .
co
cz
cz
cmap
)
)
(
λ x1 .
cxp
(
cv
x1
)
(
cin
(
cv
x1
)
(
co
cz
(
co
cc0
(
co
(
cv
x0
)
c1
cmin
)
cfz
)
cmap
)
)
)
)
)
)
...
Theorem
df_qp
:
wceq
cqp
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
csb
(
crab
(
λ x1 .
wrex
(
λ x2 .
wss
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x2
)
)
(
λ x2 .
crn
cuz
)
)
(
λ x1 .
co
cz
(
co
cc0
(
co
(
cv
x0
)
c1
cmin
)
cfz
)
cmap
)
)
(
λ x1 .
co
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
caddc
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
cmpt
(
λ x4 .
cz
)
(
λ x4 .
csu
cz
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
cmin
)
(
cv
x3
)
)
cmul
)
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wbr
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
clt
)
)
)
)
)
)
(
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
(
cxp
cz
(
csn
cc0
)
)
)
cc0
(
co
(
cv
x0
)
(
cneg
(
cinf
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
cr
clt
)
)
cexp
)
)
)
ctng
)
)
)
...
Theorem
df_qpOLD
:
wceq
cqpOLD
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
csb
(
crab
(
λ x1 .
wrex
(
λ x2 .
wss
(
cima
(
ccnv
(
cv
x1
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
cv
x2
)
)
(
λ x2 .
crn
cuz
)
)
(
λ x1 .
co
cz
(
co
cc0
(
co
(
cv
x0
)
c1
cmin
)
cfz
)
cmap
)
)
(
λ x1 .
co
(
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cof
caddc
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cfv
(
cmpt
(
λ x4 .
cz
)
(
λ x4 .
csu
cz
(
λ x5 .
co
(
cfv
(
cv
x5
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
cmin
)
(
cv
x3
)
)
cmul
)
)
)
(
cfv
(
cv
x0
)
crqp
)
)
)
)
)
(
csn
(
cop
(
cfv
cnx
cple
)
(
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wbr
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
(
csu
cz
(
λ x4 .
co
(
cfv
(
cneg
(
cv
x4
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x0
)
c1
caddc
)
(
cneg
(
cv
x4
)
)
cexp
)
cmul
)
)
clt
)
)
)
)
)
)
(
cmpt
(
λ x2 .
cv
x1
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
(
cxp
cz
(
csn
cc0
)
)
)
cc0
(
co
(
cv
x0
)
(
cneg
(
csup
(
cima
(
ccnv
(
cv
x2
)
)
(
cdif
cz
(
csn
cc0
)
)
)
cr
(
ccnv
clt
)
)
)
cexp
)
)
)
ctng
)
)
)
...
Theorem
df_zp
:
wceq
czp
(
ccom
czr
cqp
)
...
Theorem
df_qpa
:
wceq
cqpa
(
cmpt
(
λ x0 .
cprime
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cqp
)
(
λ x1 .
co
(
cv
x1
)
(
cmpt
(
λ x2 .
cn
)
(
λ x2 .
crab
(
λ x3 .
wa
(
wbr
(
co
(
cv
x1
)
(
cv
x3
)
cdg1
)
(
cv
x2
)
cle
)
(
wral
(
λ x4 .
wss
(
cima
(
ccnv
(
cv
x4
)
)
(
cdif
cz
(
csn
cc0
)
)
)
(
co
cc0
(
cv
x2
)
cfz
)
)
(
λ x4 .
crn
(
cfv
(
cv
x3
)
cco1
)
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cpl1
)
)
)
cpsl
)
)
)
...
Theorem
df_cp
:
wceq
ccp
(
ccom
ccpms
cqpa
)
...
Theorem
df_trpred
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
ctrpred
x0
x1
x2
)
(
cuni
(
crn
(
cres
(
crdg
(
cmpt
(
λ x3 .
cvv
)
(
λ x3 .
ciun
(
λ x4 .
cv
x3
)
(
λ x4 .
cpred
x0
x1
(
cv
x4
)
)
)
)
(
cpred
x0
x1
x2
)
)
com
)
)
)
...
Theorem
df_wsuc
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cwsuc
x0
x1
x2
)
(
cinf
(
cpred
x0
(
ccnv
x1
)
x2
)
x0
x1
)
...
Theorem
df_wlim
:
∀ x0 x1 :
ι → ο
.
wceq
(
cwlim
x0
x1
)
(
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
cinf
x0
x0
x1
)
)
(
wceq
(
cv
x2
)
(
csup
(
cpred
x0
x1
(
cv
x2
)
)
x0
x1
)
)
)
(
λ x2 .
x0
)
)
...
Theorem
df_frecs
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cfrecs
x0
x1
x2
)
(
cuni
(
cab
(
λ x3 .
wex
(
λ x4 .
w3a
(
wfn
(
cv
x3
)
(
cv
x4
)
)
(
wa
(
wss
(
cv
x4
)
x0
)
(
wral
(
λ x5 .
wss
(
cpred
x0
x1
(
cv
x5
)
)
(
cv
x4
)
)
(
λ x5 .
cv
x4
)
)
)
(
wral
(
λ x5 .
wceq
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cres
(
cv
x3
)
(
cpred
x0
x1
(
cv
x5
)
)
)
x2
)
)
(
λ x5 .
cv
x4
)
)
)
)
)
)
...
Theorem
df_no
:
wceq
csur
(
cab
(
λ x0 .
wrex
(
λ x1 .
wf
(
cv
x1
)
(
cpr
c1o
c2o
)
(
cv
x0
)
)
(
λ x1 .
con0
)
)
)
...
Theorem
df_slt
:
wceq
cslt
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
csur
)
(
wcel
(
cv
x1
)
csur
)
)
(
wrex
(
λ x2 .
wa
(
wral
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
(
cv
x0
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x3 .
cv
x2
)
)
(
wbr
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
ctp
(
cop
c1o
c0
)
(
cop
c1o
c2o
)
(
cop
c0
c2o
)
)
)
)
(
λ x2 .
con0
)
)
)
)
...
Theorem
df_bday
:
wceq
cbday
(
cmpt
(
λ x0 .
csur
)
(
λ x0 .
cdm
(
cv
x0
)
)
)
...
Theorem
df_sle
:
wceq
csle
(
cdif
(
cxp
csur
csur
)
(
ccnv
cslt
)
)
...